Non-rational Narain CFTs from codes over F 4
Abstract We construct a map between a class of codes over F 4 and a family of non-rational Narain CFTs. This construction is complementary to a recently introduced relation between quantum stabilizer codes and a class of rational Narain theories. From the modular bootstrap point of view we formulate...
Enregistré dans:
Auteurs principaux: | , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
SpringerOpen
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d6369b15a2794f1c9486a3f620892f7d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Résumé: | Abstract We construct a map between a class of codes over F 4 and a family of non-rational Narain CFTs. This construction is complementary to a recently introduced relation between quantum stabilizer codes and a class of rational Narain theories. From the modular bootstrap point of view we formulate a polynomial ansatz for the partition function which reduces modular invariance to a handful of algebraic easy-to-solve constraints. For certain small values of central charge our construction yields optimal theories, i.e. those with the largest value of the spectral gap. |
---|