Biosafety and efficacy evaluation of a biodegradable magnesium-based drug-eluting stent in porcine coronary artery

Abstract Although the drug-eluting stent (DES) has become the standard for percutaneous coronary intervention (PCI)-based revascularization, concerns remain regarding the use of DES, mainly due to its permanent rigid constraint to vessels. A drug-eluting bioresorbable stent (BRS) was thus developed...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jinzhou Zhu, Xiyuan Zhang, Jialin Niu, Yongjuan Shi, Zhengbin Zhu, Daopeng Dai, Chenxin Chen, Jia Pei, Guangyin Yuan, Ruiyan Zhang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/d64f5a5a558f4985b72746de66273925
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d64f5a5a558f4985b72746de66273925
record_format dspace
spelling oai:doaj.org-article:d64f5a5a558f4985b72746de662739252021-12-02T18:17:53ZBiosafety and efficacy evaluation of a biodegradable magnesium-based drug-eluting stent in porcine coronary artery10.1038/s41598-021-86803-02045-2322https://doaj.org/article/d64f5a5a558f4985b72746de662739252021-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-86803-0https://doaj.org/toc/2045-2322Abstract Although the drug-eluting stent (DES) has become the standard for percutaneous coronary intervention (PCI)-based revascularization, concerns remain regarding the use of DES, mainly due to its permanent rigid constraint to vessels. A drug-eluting bioresorbable stent (BRS) was thus developed as an alternative to DES, which can be absorbed entirely after its therapeutic period. Magnesium (Mg)-based BRSs have attracted a great deal of attention due to their suitable mechanical properties, innovative chemical features, and well-proven biocompatibility. However, the primary disadvantage of Mg-based BRSs is the rapid degradation rate, resulting in the early loss of structural support long before the recovery of vascular function. Recently, a new type of patented Mg–Nd–Zn-Zr alloy (JDBM) was developed at Shanghai Jiao Tong University to reduce the degradation rate compared to commercial Mg alloys. In the present investigation, a poly(d,l-lactic acid)-coated and rapamycin eluting (PDLLA/RAPA) JDBM BRS was prepared, and its biosafety and efficacy for coronary artery stenosis were evaluated via in vitro and in vivo experiments. The degree of smooth muscle cell adhesion to the PDLLA/RAPA coated alloy and the rapamycin pharmacokinetics of JDBM BRS were first assessed in vitro. JDBM BRS and commercial DES FIREHAWK were then implanted in the coronary arteries of a porcine model. Neointimal hyperplasia was evaluated at 30, 90, and 180 days, and re-endothelialization was evaluated at 30 days. Furthermore, Micro-CT and optical coherence tomography (OCT) analyses were performed 180 days after stent implantation to evaluate the technical feasibility, biocompatibility, and degradation characteristics of JDBM BRS in vivo. The results show the ability of a PDLLA/RAPA coated JDBM to inhibit smooth muscle cell adhesion and moderate the drug release rate of JDBM BRS in vitro. In vivo, low local and systemic risks of JDBM BRS were demonstrated in the porcine model, with preserved mechanical integrity after 6 months of implantation. We also showed that this novel BRS was associated with a similar efficacy profile compared with standard DES and high anti-restenosis performance. These findings may confer long term advantages for using this BRS over a traditional DES.Jinzhou ZhuXiyuan ZhangJialin NiuYongjuan ShiZhengbin ZhuDaopeng DaiChenxin ChenJia PeiGuangyin YuanRuiyan ZhangNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Jinzhou Zhu
Xiyuan Zhang
Jialin Niu
Yongjuan Shi
Zhengbin Zhu
Daopeng Dai
Chenxin Chen
Jia Pei
Guangyin Yuan
Ruiyan Zhang
Biosafety and efficacy evaluation of a biodegradable magnesium-based drug-eluting stent in porcine coronary artery
description Abstract Although the drug-eluting stent (DES) has become the standard for percutaneous coronary intervention (PCI)-based revascularization, concerns remain regarding the use of DES, mainly due to its permanent rigid constraint to vessels. A drug-eluting bioresorbable stent (BRS) was thus developed as an alternative to DES, which can be absorbed entirely after its therapeutic period. Magnesium (Mg)-based BRSs have attracted a great deal of attention due to their suitable mechanical properties, innovative chemical features, and well-proven biocompatibility. However, the primary disadvantage of Mg-based BRSs is the rapid degradation rate, resulting in the early loss of structural support long before the recovery of vascular function. Recently, a new type of patented Mg–Nd–Zn-Zr alloy (JDBM) was developed at Shanghai Jiao Tong University to reduce the degradation rate compared to commercial Mg alloys. In the present investigation, a poly(d,l-lactic acid)-coated and rapamycin eluting (PDLLA/RAPA) JDBM BRS was prepared, and its biosafety and efficacy for coronary artery stenosis were evaluated via in vitro and in vivo experiments. The degree of smooth muscle cell adhesion to the PDLLA/RAPA coated alloy and the rapamycin pharmacokinetics of JDBM BRS were first assessed in vitro. JDBM BRS and commercial DES FIREHAWK were then implanted in the coronary arteries of a porcine model. Neointimal hyperplasia was evaluated at 30, 90, and 180 days, and re-endothelialization was evaluated at 30 days. Furthermore, Micro-CT and optical coherence tomography (OCT) analyses were performed 180 days after stent implantation to evaluate the technical feasibility, biocompatibility, and degradation characteristics of JDBM BRS in vivo. The results show the ability of a PDLLA/RAPA coated JDBM to inhibit smooth muscle cell adhesion and moderate the drug release rate of JDBM BRS in vitro. In vivo, low local and systemic risks of JDBM BRS were demonstrated in the porcine model, with preserved mechanical integrity after 6 months of implantation. We also showed that this novel BRS was associated with a similar efficacy profile compared with standard DES and high anti-restenosis performance. These findings may confer long term advantages for using this BRS over a traditional DES.
format article
author Jinzhou Zhu
Xiyuan Zhang
Jialin Niu
Yongjuan Shi
Zhengbin Zhu
Daopeng Dai
Chenxin Chen
Jia Pei
Guangyin Yuan
Ruiyan Zhang
author_facet Jinzhou Zhu
Xiyuan Zhang
Jialin Niu
Yongjuan Shi
Zhengbin Zhu
Daopeng Dai
Chenxin Chen
Jia Pei
Guangyin Yuan
Ruiyan Zhang
author_sort Jinzhou Zhu
title Biosafety and efficacy evaluation of a biodegradable magnesium-based drug-eluting stent in porcine coronary artery
title_short Biosafety and efficacy evaluation of a biodegradable magnesium-based drug-eluting stent in porcine coronary artery
title_full Biosafety and efficacy evaluation of a biodegradable magnesium-based drug-eluting stent in porcine coronary artery
title_fullStr Biosafety and efficacy evaluation of a biodegradable magnesium-based drug-eluting stent in porcine coronary artery
title_full_unstemmed Biosafety and efficacy evaluation of a biodegradable magnesium-based drug-eluting stent in porcine coronary artery
title_sort biosafety and efficacy evaluation of a biodegradable magnesium-based drug-eluting stent in porcine coronary artery
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/d64f5a5a558f4985b72746de66273925
work_keys_str_mv AT jinzhouzhu biosafetyandefficacyevaluationofabiodegradablemagnesiumbaseddrugelutingstentinporcinecoronaryartery
AT xiyuanzhang biosafetyandefficacyevaluationofabiodegradablemagnesiumbaseddrugelutingstentinporcinecoronaryartery
AT jialinniu biosafetyandefficacyevaluationofabiodegradablemagnesiumbaseddrugelutingstentinporcinecoronaryartery
AT yongjuanshi biosafetyandefficacyevaluationofabiodegradablemagnesiumbaseddrugelutingstentinporcinecoronaryartery
AT zhengbinzhu biosafetyandefficacyevaluationofabiodegradablemagnesiumbaseddrugelutingstentinporcinecoronaryartery
AT daopengdai biosafetyandefficacyevaluationofabiodegradablemagnesiumbaseddrugelutingstentinporcinecoronaryartery
AT chenxinchen biosafetyandefficacyevaluationofabiodegradablemagnesiumbaseddrugelutingstentinporcinecoronaryartery
AT jiapei biosafetyandefficacyevaluationofabiodegradablemagnesiumbaseddrugelutingstentinporcinecoronaryartery
AT guangyinyuan biosafetyandefficacyevaluationofabiodegradablemagnesiumbaseddrugelutingstentinporcinecoronaryartery
AT ruiyanzhang biosafetyandefficacyevaluationofabiodegradablemagnesiumbaseddrugelutingstentinporcinecoronaryartery
_version_ 1718378301919068160