Genome-wide characterization of peptidyl-prolyl cis–trans isomerases in Penicillium and their regulation by salt stress in a halotolerant P. oxalicum
Abstract Peptidyl-prolyl cis–trans isomerases (PPIases) are the only class of enzymes capable of cis–trans isomerization of the prolyl peptide bond. The PPIases, comprising of different families viz., cyclophilins, FK506-binding proteins (FKBPs), parvulins and protein phosphatase 2A phosphatase acti...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d651970954f3492581fd42fc887f6f39 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Peptidyl-prolyl cis–trans isomerases (PPIases) are the only class of enzymes capable of cis–trans isomerization of the prolyl peptide bond. The PPIases, comprising of different families viz., cyclophilins, FK506-binding proteins (FKBPs), parvulins and protein phosphatase 2A phosphatase activators (PTPAs), play essential roles in different cellular processes. Though PPIase gene families have been characterized in different organisms, information regarding these proteins is lacking in Penicillium species, which are commercially an important fungi group. In this study, we carried out genome-wide analysis of PPIases in different Penicillium spp. and investigated their regulation by salt stress in a halotolerant strain of Penicillium oxalicum. These analyses revealed that the number of genes encoding cyclophilins, FKBPs, parvulins and PTPAs in Penicillium spp. varies between 7–11, 2–5, 1–2, and 1–2, respectively. The halotolerant P. oxalicum depicted significant enhancement in the mycelial PPIase activity in the presence of 15% NaCl, thus, highlighting the role of these enzymes in salt stress adaptation. The stress-induced increase in PPIase activity at 4 and 10 DAI in P. oxalicum was associated with higher expression of PoxCYP18. Characterization of PPIases in Penicillium spp. will provide an important database for understanding their cellular functions and might facilitate their applications in industrial processes through biotechnological interventions. |
---|