Subsampling scaling

We can often observe only a small fraction of a system, which leads to biases in the inference of its global properties. Here, the authors develop a framework that enables overcoming subsampling effects, apply it to recordings from developing neural networks, and find that neural networks become cri...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: A. Levina, V. Priesemann
Format: article
Langue:EN
Publié: Nature Portfolio 2017
Sujets:
Q
Accès en ligne:https://doaj.org/article/d66280b5799a4525aab1718bc929494c
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!