Enhancing Korean Named Entity Recognition With Linguistic Tokenization Strategies
Tokenization is a significant primary step for the training of the Pre-trained Language Model (PLM), which alleviates the challenging Out-of-Vocabulary problem in the area of Natural Language Processing. As tokenization strategies can change linguistic understanding, it is essential to consider the...
Guardado en:
Autores principales: | Gyeongmin Kim, Junyoung Son, Jinsung Kim, Hyunhee Lee, Heuiseok Lim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d665db0beed8491ba11d763eda19afbd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Domain Specific Entity Recognition With Semantic-Based Deep Learning Approach
por: Quoc Hung Ngo, et al.
Publicado: (2021) -
Optimizing Small BERTs Trained for German NER
por: Jochen Zöllner, et al.
Publicado: (2021) -
Named Entity Recognition in Electric Power Metering Domain Based on Attention Mechanism
por: Kaihong Zheng, et al.
Publicado: (2021) -
Named-Entity Dataset for Medieval Latin, Middle High German and Old Norse
por: Clément Besnier, et al.
Publicado: (2021) -
GNER: A Generative Model for Geological Named Entity Recognition Without Labeled Data Using Deep Learning
por: Qinjun Qiu, et al.
Publicado: (2019)