A Sneak-Peek into the Physician’s Brain: A Retrospective Machine Learning-Driven Investigation of Decision-Making in TAVR versus SAVR for Young High-Risk Patients with Severe Symptomatic Aortic Stenosis
Transcatheter aortic valve replacement (TAVR) has rapidly become a viable alternative to the conventional isolated surgical aortic valve replacement (iSAVR) for treating severe symptomatic aortic stenosis. However, data on younger patients is scarce and a gap exists between data-based recommendation...
Guardado en:
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d6695260055c474b95d1d171dae217a8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d6695260055c474b95d1d171dae217a8 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d6695260055c474b95d1d171dae217a82021-11-25T18:06:49ZA Sneak-Peek into the Physician’s Brain: A Retrospective Machine Learning-Driven Investigation of Decision-Making in TAVR versus SAVR for Young High-Risk Patients with Severe Symptomatic Aortic Stenosis10.3390/jpm111110622075-4426https://doaj.org/article/d6695260055c474b95d1d171dae217a82021-10-01T00:00:00Zhttps://www.mdpi.com/2075-4426/11/11/1062https://doaj.org/toc/2075-4426Transcatheter aortic valve replacement (TAVR) has rapidly become a viable alternative to the conventional isolated surgical aortic valve replacement (iSAVR) for treating severe symptomatic aortic stenosis. However, data on younger patients is scarce and a gap exists between data-based recommendations and the clinical use of TAVR. In our study, we utilized a machine learning (ML) driven approach to model the complex decision-making process of Heart Teams when treating young patients with severe symptomatic aortic stenosis with either TAVR or iSAVR and to identify the relevant considerations. Out of the considered factors, the variables most prominently featured in our ML model were congestive heart failure, established risk assessment scores, previous cardiac surgeries, a reduced left ventricular ejection fraction and peripheral vascular disease. Our study demonstrates a viable application of ML-based approaches for studying and understanding complex clinical decision-making processes.Ena HasimbegovicLaszlo PappMarko GrahovacDenis KrajncThomas PoschnerWaseem HasanMartin AndreasChristoph GrossAndreas StrouhalGeorg Delle-KarthMartin GrabenwögerChristopher AdlbrechtMarkus MachMDPI AGarticleTAVRTAVIiSAVRaortic stenosismachine learningheart teamMedicineRENJournal of Personalized Medicine, Vol 11, Iss 1062, p 1062 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
TAVR TAVI iSAVR aortic stenosis machine learning heart team Medicine R |
spellingShingle |
TAVR TAVI iSAVR aortic stenosis machine learning heart team Medicine R Ena Hasimbegovic Laszlo Papp Marko Grahovac Denis Krajnc Thomas Poschner Waseem Hasan Martin Andreas Christoph Gross Andreas Strouhal Georg Delle-Karth Martin Grabenwöger Christopher Adlbrecht Markus Mach A Sneak-Peek into the Physician’s Brain: A Retrospective Machine Learning-Driven Investigation of Decision-Making in TAVR versus SAVR for Young High-Risk Patients with Severe Symptomatic Aortic Stenosis |
description |
Transcatheter aortic valve replacement (TAVR) has rapidly become a viable alternative to the conventional isolated surgical aortic valve replacement (iSAVR) for treating severe symptomatic aortic stenosis. However, data on younger patients is scarce and a gap exists between data-based recommendations and the clinical use of TAVR. In our study, we utilized a machine learning (ML) driven approach to model the complex decision-making process of Heart Teams when treating young patients with severe symptomatic aortic stenosis with either TAVR or iSAVR and to identify the relevant considerations. Out of the considered factors, the variables most prominently featured in our ML model were congestive heart failure, established risk assessment scores, previous cardiac surgeries, a reduced left ventricular ejection fraction and peripheral vascular disease. Our study demonstrates a viable application of ML-based approaches for studying and understanding complex clinical decision-making processes. |
format |
article |
author |
Ena Hasimbegovic Laszlo Papp Marko Grahovac Denis Krajnc Thomas Poschner Waseem Hasan Martin Andreas Christoph Gross Andreas Strouhal Georg Delle-Karth Martin Grabenwöger Christopher Adlbrecht Markus Mach |
author_facet |
Ena Hasimbegovic Laszlo Papp Marko Grahovac Denis Krajnc Thomas Poschner Waseem Hasan Martin Andreas Christoph Gross Andreas Strouhal Georg Delle-Karth Martin Grabenwöger Christopher Adlbrecht Markus Mach |
author_sort |
Ena Hasimbegovic |
title |
A Sneak-Peek into the Physician’s Brain: A Retrospective Machine Learning-Driven Investigation of Decision-Making in TAVR versus SAVR for Young High-Risk Patients with Severe Symptomatic Aortic Stenosis |
title_short |
A Sneak-Peek into the Physician’s Brain: A Retrospective Machine Learning-Driven Investigation of Decision-Making in TAVR versus SAVR for Young High-Risk Patients with Severe Symptomatic Aortic Stenosis |
title_full |
A Sneak-Peek into the Physician’s Brain: A Retrospective Machine Learning-Driven Investigation of Decision-Making in TAVR versus SAVR for Young High-Risk Patients with Severe Symptomatic Aortic Stenosis |
title_fullStr |
A Sneak-Peek into the Physician’s Brain: A Retrospective Machine Learning-Driven Investigation of Decision-Making in TAVR versus SAVR for Young High-Risk Patients with Severe Symptomatic Aortic Stenosis |
title_full_unstemmed |
A Sneak-Peek into the Physician’s Brain: A Retrospective Machine Learning-Driven Investigation of Decision-Making in TAVR versus SAVR for Young High-Risk Patients with Severe Symptomatic Aortic Stenosis |
title_sort |
sneak-peek into the physician’s brain: a retrospective machine learning-driven investigation of decision-making in tavr versus savr for young high-risk patients with severe symptomatic aortic stenosis |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/d6695260055c474b95d1d171dae217a8 |
work_keys_str_mv |
AT enahasimbegovic asneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis AT laszlopapp asneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis AT markograhovac asneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis AT deniskrajnc asneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis AT thomasposchner asneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis AT waseemhasan asneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis AT martinandreas asneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis AT christophgross asneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis AT andreasstrouhal asneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis AT georgdellekarth asneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis AT martingrabenwoger asneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis AT christopheradlbrecht asneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis AT markusmach asneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis AT enahasimbegovic sneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis AT laszlopapp sneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis AT markograhovac sneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis AT deniskrajnc sneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis AT thomasposchner sneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis AT waseemhasan sneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis AT martinandreas sneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis AT christophgross sneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis AT andreasstrouhal sneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis AT georgdellekarth sneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis AT martingrabenwoger sneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis AT christopheradlbrecht sneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis AT markusmach sneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis |
_version_ |
1718411647355191296 |