A Sneak-Peek into the Physician’s Brain: A Retrospective Machine Learning-Driven Investigation of Decision-Making in TAVR versus SAVR for Young High-Risk Patients with Severe Symptomatic Aortic Stenosis

Transcatheter aortic valve replacement (TAVR) has rapidly become a viable alternative to the conventional isolated surgical aortic valve replacement (iSAVR) for treating severe symptomatic aortic stenosis. However, data on younger patients is scarce and a gap exists between data-based recommendation...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ena Hasimbegovic, Laszlo Papp, Marko Grahovac, Denis Krajnc, Thomas Poschner, Waseem Hasan, Martin Andreas, Christoph Gross, Andreas Strouhal, Georg Delle-Karth, Martin Grabenwöger, Christopher Adlbrecht, Markus Mach
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
R
Acceso en línea:https://doaj.org/article/d6695260055c474b95d1d171dae217a8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d6695260055c474b95d1d171dae217a8
record_format dspace
spelling oai:doaj.org-article:d6695260055c474b95d1d171dae217a82021-11-25T18:06:49ZA Sneak-Peek into the Physician’s Brain: A Retrospective Machine Learning-Driven Investigation of Decision-Making in TAVR versus SAVR for Young High-Risk Patients with Severe Symptomatic Aortic Stenosis10.3390/jpm111110622075-4426https://doaj.org/article/d6695260055c474b95d1d171dae217a82021-10-01T00:00:00Zhttps://www.mdpi.com/2075-4426/11/11/1062https://doaj.org/toc/2075-4426Transcatheter aortic valve replacement (TAVR) has rapidly become a viable alternative to the conventional isolated surgical aortic valve replacement (iSAVR) for treating severe symptomatic aortic stenosis. However, data on younger patients is scarce and a gap exists between data-based recommendations and the clinical use of TAVR. In our study, we utilized a machine learning (ML) driven approach to model the complex decision-making process of Heart Teams when treating young patients with severe symptomatic aortic stenosis with either TAVR or iSAVR and to identify the relevant considerations. Out of the considered factors, the variables most prominently featured in our ML model were congestive heart failure, established risk assessment scores, previous cardiac surgeries, a reduced left ventricular ejection fraction and peripheral vascular disease. Our study demonstrates a viable application of ML-based approaches for studying and understanding complex clinical decision-making processes.Ena HasimbegovicLaszlo PappMarko GrahovacDenis KrajncThomas PoschnerWaseem HasanMartin AndreasChristoph GrossAndreas StrouhalGeorg Delle-KarthMartin GrabenwögerChristopher AdlbrechtMarkus MachMDPI AGarticleTAVRTAVIiSAVRaortic stenosismachine learningheart teamMedicineRENJournal of Personalized Medicine, Vol 11, Iss 1062, p 1062 (2021)
institution DOAJ
collection DOAJ
language EN
topic TAVR
TAVI
iSAVR
aortic stenosis
machine learning
heart team
Medicine
R
spellingShingle TAVR
TAVI
iSAVR
aortic stenosis
machine learning
heart team
Medicine
R
Ena Hasimbegovic
Laszlo Papp
Marko Grahovac
Denis Krajnc
Thomas Poschner
Waseem Hasan
Martin Andreas
Christoph Gross
Andreas Strouhal
Georg Delle-Karth
Martin Grabenwöger
Christopher Adlbrecht
Markus Mach
A Sneak-Peek into the Physician’s Brain: A Retrospective Machine Learning-Driven Investigation of Decision-Making in TAVR versus SAVR for Young High-Risk Patients with Severe Symptomatic Aortic Stenosis
description Transcatheter aortic valve replacement (TAVR) has rapidly become a viable alternative to the conventional isolated surgical aortic valve replacement (iSAVR) for treating severe symptomatic aortic stenosis. However, data on younger patients is scarce and a gap exists between data-based recommendations and the clinical use of TAVR. In our study, we utilized a machine learning (ML) driven approach to model the complex decision-making process of Heart Teams when treating young patients with severe symptomatic aortic stenosis with either TAVR or iSAVR and to identify the relevant considerations. Out of the considered factors, the variables most prominently featured in our ML model were congestive heart failure, established risk assessment scores, previous cardiac surgeries, a reduced left ventricular ejection fraction and peripheral vascular disease. Our study demonstrates a viable application of ML-based approaches for studying and understanding complex clinical decision-making processes.
format article
author Ena Hasimbegovic
Laszlo Papp
Marko Grahovac
Denis Krajnc
Thomas Poschner
Waseem Hasan
Martin Andreas
Christoph Gross
Andreas Strouhal
Georg Delle-Karth
Martin Grabenwöger
Christopher Adlbrecht
Markus Mach
author_facet Ena Hasimbegovic
Laszlo Papp
Marko Grahovac
Denis Krajnc
Thomas Poschner
Waseem Hasan
Martin Andreas
Christoph Gross
Andreas Strouhal
Georg Delle-Karth
Martin Grabenwöger
Christopher Adlbrecht
Markus Mach
author_sort Ena Hasimbegovic
title A Sneak-Peek into the Physician’s Brain: A Retrospective Machine Learning-Driven Investigation of Decision-Making in TAVR versus SAVR for Young High-Risk Patients with Severe Symptomatic Aortic Stenosis
title_short A Sneak-Peek into the Physician’s Brain: A Retrospective Machine Learning-Driven Investigation of Decision-Making in TAVR versus SAVR for Young High-Risk Patients with Severe Symptomatic Aortic Stenosis
title_full A Sneak-Peek into the Physician’s Brain: A Retrospective Machine Learning-Driven Investigation of Decision-Making in TAVR versus SAVR for Young High-Risk Patients with Severe Symptomatic Aortic Stenosis
title_fullStr A Sneak-Peek into the Physician’s Brain: A Retrospective Machine Learning-Driven Investigation of Decision-Making in TAVR versus SAVR for Young High-Risk Patients with Severe Symptomatic Aortic Stenosis
title_full_unstemmed A Sneak-Peek into the Physician’s Brain: A Retrospective Machine Learning-Driven Investigation of Decision-Making in TAVR versus SAVR for Young High-Risk Patients with Severe Symptomatic Aortic Stenosis
title_sort sneak-peek into the physician’s brain: a retrospective machine learning-driven investigation of decision-making in tavr versus savr for young high-risk patients with severe symptomatic aortic stenosis
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/d6695260055c474b95d1d171dae217a8
work_keys_str_mv AT enahasimbegovic asneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis
AT laszlopapp asneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis
AT markograhovac asneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis
AT deniskrajnc asneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis
AT thomasposchner asneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis
AT waseemhasan asneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis
AT martinandreas asneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis
AT christophgross asneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis
AT andreasstrouhal asneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis
AT georgdellekarth asneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis
AT martingrabenwoger asneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis
AT christopheradlbrecht asneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis
AT markusmach asneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis
AT enahasimbegovic sneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis
AT laszlopapp sneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis
AT markograhovac sneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis
AT deniskrajnc sneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis
AT thomasposchner sneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis
AT waseemhasan sneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis
AT martinandreas sneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis
AT christophgross sneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis
AT andreasstrouhal sneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis
AT georgdellekarth sneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis
AT martingrabenwoger sneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis
AT christopheradlbrecht sneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis
AT markusmach sneakpeekintothephysiciansbrainaretrospectivemachinelearningdriveninvestigationofdecisionmakingintavrversussavrforyounghighriskpatientswithseveresymptomaticaorticstenosis
_version_ 1718411647355191296