Improvement of Total Etching Dentin Bonding with Subpressure

Abstract This study aimed to investigate the effects of subpressure on the bond properties of total-etching adhesive to dentin. Thirty-six caries-free premolars were sectioned parallel to the occlusal plane and randomly divided into four groups (n = 9): a control group (C, no treatment) and three su...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rui-Shen Zhuge, Yue-Ming Tian, Zu-Tai Zhang, Ning Ding, Yong-Mei Li, Dong-Xiang Zheng
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/d67dc06cbe974d4a860cec602c0b709e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract This study aimed to investigate the effects of subpressure on the bond properties of total-etching adhesive to dentin. Thirty-six caries-free premolars were sectioned parallel to the occlusal plane and randomly divided into four groups (n = 9): a control group (C, no treatment) and three subpressure groups, which were treated under 0.8, 0.6 or 0.4 bar after applying adhesives, named S8, S6 and S4, respectively. Afterward, resin was bonded to the dentin surface, and 27 beams (1.0 mm × 1.0 mm) of each group were sectioned. One was selected to observe the bonding interface from each group by SEM. Each group was divided into two subgroups (n = 13): 24 hours of water storage (I) and 10,000 thermocycling (A). The microtensile bond strength (μTBS), failure modes and nanoleakage expression were evaluated. SEM results showed that the subpressure groups had longer and denser resin tags. The μTBS of the subpressure groups was higher than that of the control group (p < 0.05). The subpressure groups were dominated by mixed failure, whereas main interfacial failure appeared in group C. The subpressure groups showed less silver deposition than the control group (p < 0.05). The subpressure technique may remarkably improve bonding strength and decrease nanoleakage on total-etching bonding.