Green synthesis of gold nanoparticles using plant extracts as reducing agents

Paz Elia,1 Raya Zach,1 Sharon Hazan,2 Sofiya Kolusheva,2 Ze’ev Porat,1,3 Yehuda Zeiri1,3 1Department of Biomedical Engineering, 2Ilse Katz Institute of Nanotechnology, Ben-Gurion University of the Negev, 3Division of Chemistry, Negev Nuclear Research Center Beersheba, Israel Abstract: G...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Elia P, Zach R, Hazan S, Kolusheva S, Porat Z, Zeiri Y
Format: article
Langue:EN
Publié: Dove Medical Press 2014
Sujets:
Accès en ligne:https://doaj.org/article/d68231bf19d34cdbb82f30b03a8a4a03
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Paz Elia,1 Raya Zach,1 Sharon Hazan,2 Sofiya Kolusheva,2 Ze’ev Porat,1,3 Yehuda Zeiri1,3 1Department of Biomedical Engineering, 2Ilse Katz Institute of Nanotechnology, Ben-Gurion University of the Negev, 3Division of Chemistry, Negev Nuclear Research Center Beersheba, Israel Abstract: Gold nanoparticles (GNPs) were prepared using four different plant extracts as reducing and stabilizing agents. The extracts were obtained from the following plants: Salvia officinalis, Lippia citriodora, Pelargonium graveolens and Punica granatum. The size distributions of the GNPs were measured using three different methods: dynamic light scattering, nanoparticle-tracking analysis and analysis of scanning electron microscopy images. The three methods yielded similar size distributions. Biocompatibility was examined by correlation of L-cell growth in the presence of different amounts of GNPs. All GNPs showed good biocompatibility and good stability for over 3 weeks. Therefore, they can be used for imaging and drug-delivery applications in the human body. High-resolution transmission electron microscopy was used to view the shapes of the larger GNPs, while infrared spectroscopy was employed to characterize the various functional groups in the organic layer that stabilize the particles. Finally, active ingredients in the plant extract that might be involved in the formation of GNPs are proposed, based on experiments with pure antioxidants that are known to exist in that plant. Keywords: gold nanoparticles, Lippia citriodora, Salvia officinalis, Pelargonium graveolens, Punica granatum, antioxidants, size distribution, zeta potential