Highly efficient UV/H2O2 technology for the removal of nifedipine antibiotics: Kinetics, co-existing anions and degradation pathways
This study investigates the degradation of nifedipine (NIF) by using a novel and highly efficient ultraviolet light combined with hydrogen peroxide (UV/H2O2). The degradation rate and degradation kinetics of NIF first increased and then remained constant as the H2O2 dose increased, and the quasi-per...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d6943edc399e49a0b559b1299ca37d0b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | This study investigates the degradation of nifedipine (NIF) by using a novel and highly efficient ultraviolet light combined with hydrogen peroxide (UV/H2O2). The degradation rate and degradation kinetics of NIF first increased and then remained constant as the H2O2 dose increased, and the quasi-percolation threshold was an H2O2 dose of 0.378 mmol/L. An increase in the initial pH and divalent anions (SO42- and CO32-) resulted in a linear decrease of NIF (the R2 of the initial pH, SO42- and CO32- was 0.6884, 0.9939 and 0.8589, respectively). The effect of monovalent anions was complex; Cl- and NO3- had opposite effects: low Cl- or high NO3- promoted degradation, and high Cl- or low NO3- inhibited the degradation of NIF. The degradation rate and kinetics constant of NIF via UV/H2O2 were 99.94% and 1.45569 min-1, respectively, and the NIF concentration = 5 mg/L, pH = 7, the H2O2 dose = 0.52 mmol/L, T = 20 ℃ and the reaction time = 5 min. The ·OH was the primary key reactive oxygen species (ROS) and ·O2- was the secondary key ROS. There were 11 intermediate products (P345, P329, P329-2, P315, P301, P274, P271, P241, P200, P181 and P158) and 2 degradation pathways (dehydrogenation of NIF → P345 → P274 and dehydration of NIF → P329 → P315). |
---|