Effect of PM2.5 pollution on perinatal mortality in China
Abstract Using ArcGIS to analyze satellite derived PM2.5 estimates, this paper obtains the average concentration and maximum concentration of fine particulate matter (PM2.5) in China's 31 provinces from 2002 to 2015. We adopt fixed effects model and spatial Durbin model to investigate the assoc...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d69918fcf7e14c66a1e4e2d31e8ee0ff |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Using ArcGIS to analyze satellite derived PM2.5 estimates, this paper obtains the average concentration and maximum concentration of fine particulate matter (PM2.5) in China's 31 provinces from 2002 to 2015. We adopt fixed effects model and spatial Durbin model to investigate the association between PM2.5 and perinatal mortality rates. The results indicate that PM2.5 has a significantly positive association with perinatal mortality rates. A 1% increase of log-transformed average concentration and maximum concentrations of PM2.5 is associated with 1.76‰ and 2.31‰ increase of perinatal mortality rates, respectively. In spatial econometrics analysis, we find PM2.5 has significant spatial autocorrelation characteristics. The concentrations of log-transformed average and maximum PM2.5 increase 1% is associated with a 2.49% increase in a 2.49‰ and 2.19‰ increase of perinatal mortality rates, respectively. The potential mechanism is that air pollution has an impact on infant weight to impact perinatal mortality rates. |
---|