Object detection based on an adaptive attention mechanism
Abstract Object detection is an important component of computer vision. Most of the recent successful object detection methods are based on convolutional neural networks (CNNs). To improve the performance of these networks, researchers have designed many different architectures. They found that the...
Enregistré dans:
Auteurs principaux: | Wei Li, Kai Liu, Lizhe Zhang, Fei Cheng |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d6996ace62984c7c83a6f556fb40dc2e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Lightweight Underwater Object Detection Based on YOLO v4 and Multi-Scale Attentional Feature Fusion
par: Minghua Zhang, et autres
Publié: (2021) -
Investigating the status of biological stimuli as objects of attention in multiple object tracking.
par: Lee H de-Wit, et autres
Publié: (2011) -
Siamese anchor-free object tracking with multiscale spatial attentions
par: Jianming Zhang, et autres
Publié: (2021) -
Malicious traffic detection combined deep neural network with hierarchical attention mechanism
par: Xiaoyang Liu, et autres
Publié: (2021) -
Weakly Supervised Learning for Object Localization Based on an Attention Mechanism
par: Nojin Park, et autres
Publié: (2021)