Object detection based on an adaptive attention mechanism
Abstract Object detection is an important component of computer vision. Most of the recent successful object detection methods are based on convolutional neural networks (CNNs). To improve the performance of these networks, researchers have designed many different architectures. They found that the...
Guardado en:
Autores principales: | Wei Li, Kai Liu, Lizhe Zhang, Fei Cheng |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d6996ace62984c7c83a6f556fb40dc2e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Lightweight Underwater Object Detection Based on YOLO v4 and Multi-Scale Attentional Feature Fusion
por: Minghua Zhang, et al.
Publicado: (2021) -
Investigating the status of biological stimuli as objects of attention in multiple object tracking.
por: Lee H de-Wit, et al.
Publicado: (2011) -
Siamese anchor-free object tracking with multiscale spatial attentions
por: Jianming Zhang, et al.
Publicado: (2021) -
Malicious traffic detection combined deep neural network with hierarchical attention mechanism
por: Xiaoyang Liu, et al.
Publicado: (2021) -
Weakly Supervised Learning for Object Localization Based on an Attention Mechanism
por: Nojin Park, et al.
Publicado: (2021)