Exact travelling wave solutions for nonlinear system of spatiotemporal fractional quantum mechanics equations

Schrödinger equation is an indispensable model for quantum mechanics, used for modelling several fascinating complex nonlinear physical systems, such as quantum condensates, nonlinear optics, hydrodynamics, shallow-water waves, and the harmonic oscillator. The objective of this paper is to investiga...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Mohammed Alabedalhadi
Formato: article
Lenguaje:EN
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://doaj.org/article/d69acf97527846e191b8a4d8eef4c8f0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Schrödinger equation is an indispensable model for quantum mechanics, used for modelling several fascinating complex nonlinear physical systems, such as quantum condensates, nonlinear optics, hydrodynamics, shallow-water waves, and the harmonic oscillator. The objective of this paper is to investigate and study the exact travelling wave solutions of nonlinear triple fractional Schrödinger equations involving a modified Riemann–Liouville fractional derivative. Using the Riccati-Bernoulli Sub-ODE technique, the Bäcklund transformation is employed to handle the posed system. The traveling wave solutions methodology lies in converting the fractional Schrödinger equations into a nonlinear system of fractional ODEs. An infinite sequence of solutions to the fractional partial differential equations can be obtained directly through solving the resulting nonlinear fractional system. Some graphical representations of the obtained solutions after selecting suitable values for fractional values and parameters are illustrated to test accuracy and verify the power, and effectiveness of the proposed method.