In vitro and in silico characterization of adiponectin-receptor agonist dipeptides
Abstract The aim of this study is to develop a dipeptide showing an adiponectin receptor 1 (AdipoR1) agonistic effect in skeletal muscle L6 myotubes. Based on the structure of the AdipoR1 agonist, AdipoRon, 15 synthetic dipeptides were targeted to promote glucose uptake in L6 myotubes. Tyr-Pro showe...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d6a6f6a590ac47a8ae6ba0208904792b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract The aim of this study is to develop a dipeptide showing an adiponectin receptor 1 (AdipoR1) agonistic effect in skeletal muscle L6 myotubes. Based on the structure of the AdipoR1 agonist, AdipoRon, 15 synthetic dipeptides were targeted to promote glucose uptake in L6 myotubes. Tyr-Pro showed a significant increase in glucose uptake among the dipeptides, while other dipeptides, including Pro-Tyr, failed to exert this effect. Tyr-Pro induces glucose transporter 4 (Glut4) expression in the plasma membrane, along with adenosine monophosphate-activated protein kinase (AMPK) activation. In AdipoR1-knocked down cells, the promotion by Tyr-Pro was ameliorated, indicating that Tyr-Pro may directly interact with AdipoR1 as an agonist, followed by the activation of AMPK/Glut4 translocation in L6 myotubes. Molecular dynamics simulations revealed that a Tyr-Pro molecule was stably positioned in the two potential binding pockets (sites 1 and 2) of the seven-transmembrane receptor, AdipoR1, anchored in a virtual 1-palmitoyl-2-oleoyl-phosphatidylcholine membrane. In conclusion, we demonstrated the antidiabetic function of the Tyr-Pro dipeptide as a possible AdipoR1 agonist. |
---|