Design and development of a robotized system coupled to µCT imaging for intratumoral drug evaluation in a HCC mouse model.

Hepatocellular carcinoma (HCC) is one of the most common cancer related deaths worldwide. One of the main challenges in cancer treatment is drug delivery to target cancer cells specifically. Preclinical evaluation of intratumoral drugs in orthotopic liver cancer mouse models is difficult, as percuta...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Gaétan Bour, Fernand Martel, Laurent Goffin, Bernard Bayle, Jacques Gangloff, Marc Aprahamian, Jacques Marescaux, Jean-Marc Egly
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2014
Materias:
R
Q
Acceso en línea:https://doaj.org/article/d6a7cad97c56439da39067b30ff15684
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Hepatocellular carcinoma (HCC) is one of the most common cancer related deaths worldwide. One of the main challenges in cancer treatment is drug delivery to target cancer cells specifically. Preclinical evaluation of intratumoral drugs in orthotopic liver cancer mouse models is difficult, as percutaneous injection hardly can be precisely performed manually. In the present study we have characterized a hepatoma model developing a single tumor nodule by implantation of Hep55.1C cells in the liver of syngeneic C57BL/6J mice. Tumor evolution was followed up by µCT imaging, and at the histological and molecular levels. This orthotopic, poorly differentiated mouse HCC model expressing fibrosis, inflammation and cancer markers was used to assess the efficacy of drugs. We took advantage of the high precision of a previously developed robotized system for automated, image-guided intratumoral needle insertion, to administer every week in the tumor of the Hep55.1C mouse model. A significant tumor growth inhibition was observed using our robotized system, whereas manual intraperitoneal administration had no effect, by comparison to untreated control mice.