Paired maternal and fetal metabolomics reveal a differential fingerprint in preeclampsia versus fetal growth restriction

Abstract Preeclampsia (PE) and fetal growth restriction (FGR) are both placenta-mediated disorders with unclear pathogenesis. Metabolomics of maternal and fetal pairs might help in understanding these disorders. We recruited prospectively pregnancies with normotensive FGR, PE without FGR, PE + FGR a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lina Youssef, Rui V. Simões, Jezid Miranda, María Luisa García-Martín, Cristina Paules, Francesca Crovetto, Nuria Amigó, Nicolau Cañellas, Eduard Gratacos, Fatima Crispi
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/d6aaaf41e16a4bf398e8f7ed65b26696
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d6aaaf41e16a4bf398e8f7ed65b26696
record_format dspace
spelling oai:doaj.org-article:d6aaaf41e16a4bf398e8f7ed65b266962021-12-02T18:30:39ZPaired maternal and fetal metabolomics reveal a differential fingerprint in preeclampsia versus fetal growth restriction10.1038/s41598-021-93936-92045-2322https://doaj.org/article/d6aaaf41e16a4bf398e8f7ed65b266962021-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-93936-9https://doaj.org/toc/2045-2322Abstract Preeclampsia (PE) and fetal growth restriction (FGR) are both placenta-mediated disorders with unclear pathogenesis. Metabolomics of maternal and fetal pairs might help in understanding these disorders. We recruited prospectively pregnancies with normotensive FGR, PE without FGR, PE + FGR and uncomplicated pregnancies as controls. Nuclear magnetic resonance metabolomics were applied on plasma samples collected at delivery. Advanced lipoprotein, glycoprotein and choline profiling was performed using the Liposcale test. The software package Dolphin was used to quantify 24 low-molecular-weight metabolites. Statistical analysis comprised the comparison between each group of complicated pregnancies versus controls, considering 5% false discovery rate correction. Lipid profiles were altered in accordance with the clinical presentation of these disorders. Specifically, PE mothers and FGR fetuses (with or without FGR or PE, respectively) exhibited a pro-atherogenic and pro-inflammatory profile, with higher concentrations of triglycerides, remnant cholesterol (VLDL, IDL) and Glc/GalNAc-linked and lipid-associated glycoproteins compared to controls. Low-molecular-weight metabolites were extensively disturbed in preeclamptic mothers, with or without FGR. Growth restricted fetuses in the presence of PE showed changes in low-molecular-weight metabolites similar to their mothers (increased creatine and creatinine), while normotensive FGR fetuses presented scarce differences, consistent with undernutrition (lower isoleucine). Further research is warranted to clarify maternal and fetal adaptations to PE and FGR.Lina YoussefRui V. SimõesJezid MirandaMaría Luisa García-MartínCristina PaulesFrancesca CrovettoNuria AmigóNicolau CañellasEduard GratacosFatima CrispiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Lina Youssef
Rui V. Simões
Jezid Miranda
María Luisa García-Martín
Cristina Paules
Francesca Crovetto
Nuria Amigó
Nicolau Cañellas
Eduard Gratacos
Fatima Crispi
Paired maternal and fetal metabolomics reveal a differential fingerprint in preeclampsia versus fetal growth restriction
description Abstract Preeclampsia (PE) and fetal growth restriction (FGR) are both placenta-mediated disorders with unclear pathogenesis. Metabolomics of maternal and fetal pairs might help in understanding these disorders. We recruited prospectively pregnancies with normotensive FGR, PE without FGR, PE + FGR and uncomplicated pregnancies as controls. Nuclear magnetic resonance metabolomics were applied on plasma samples collected at delivery. Advanced lipoprotein, glycoprotein and choline profiling was performed using the Liposcale test. The software package Dolphin was used to quantify 24 low-molecular-weight metabolites. Statistical analysis comprised the comparison between each group of complicated pregnancies versus controls, considering 5% false discovery rate correction. Lipid profiles were altered in accordance with the clinical presentation of these disorders. Specifically, PE mothers and FGR fetuses (with or without FGR or PE, respectively) exhibited a pro-atherogenic and pro-inflammatory profile, with higher concentrations of triglycerides, remnant cholesterol (VLDL, IDL) and Glc/GalNAc-linked and lipid-associated glycoproteins compared to controls. Low-molecular-weight metabolites were extensively disturbed in preeclamptic mothers, with or without FGR. Growth restricted fetuses in the presence of PE showed changes in low-molecular-weight metabolites similar to their mothers (increased creatine and creatinine), while normotensive FGR fetuses presented scarce differences, consistent with undernutrition (lower isoleucine). Further research is warranted to clarify maternal and fetal adaptations to PE and FGR.
format article
author Lina Youssef
Rui V. Simões
Jezid Miranda
María Luisa García-Martín
Cristina Paules
Francesca Crovetto
Nuria Amigó
Nicolau Cañellas
Eduard Gratacos
Fatima Crispi
author_facet Lina Youssef
Rui V. Simões
Jezid Miranda
María Luisa García-Martín
Cristina Paules
Francesca Crovetto
Nuria Amigó
Nicolau Cañellas
Eduard Gratacos
Fatima Crispi
author_sort Lina Youssef
title Paired maternal and fetal metabolomics reveal a differential fingerprint in preeclampsia versus fetal growth restriction
title_short Paired maternal and fetal metabolomics reveal a differential fingerprint in preeclampsia versus fetal growth restriction
title_full Paired maternal and fetal metabolomics reveal a differential fingerprint in preeclampsia versus fetal growth restriction
title_fullStr Paired maternal and fetal metabolomics reveal a differential fingerprint in preeclampsia versus fetal growth restriction
title_full_unstemmed Paired maternal and fetal metabolomics reveal a differential fingerprint in preeclampsia versus fetal growth restriction
title_sort paired maternal and fetal metabolomics reveal a differential fingerprint in preeclampsia versus fetal growth restriction
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/d6aaaf41e16a4bf398e8f7ed65b26696
work_keys_str_mv AT linayoussef pairedmaternalandfetalmetabolomicsrevealadifferentialfingerprintinpreeclampsiaversusfetalgrowthrestriction
AT ruivsimoes pairedmaternalandfetalmetabolomicsrevealadifferentialfingerprintinpreeclampsiaversusfetalgrowthrestriction
AT jezidmiranda pairedmaternalandfetalmetabolomicsrevealadifferentialfingerprintinpreeclampsiaversusfetalgrowthrestriction
AT marialuisagarciamartin pairedmaternalandfetalmetabolomicsrevealadifferentialfingerprintinpreeclampsiaversusfetalgrowthrestriction
AT cristinapaules pairedmaternalandfetalmetabolomicsrevealadifferentialfingerprintinpreeclampsiaversusfetalgrowthrestriction
AT francescacrovetto pairedmaternalandfetalmetabolomicsrevealadifferentialfingerprintinpreeclampsiaversusfetalgrowthrestriction
AT nuriaamigo pairedmaternalandfetalmetabolomicsrevealadifferentialfingerprintinpreeclampsiaversusfetalgrowthrestriction
AT nicolaucanellas pairedmaternalandfetalmetabolomicsrevealadifferentialfingerprintinpreeclampsiaversusfetalgrowthrestriction
AT eduardgratacos pairedmaternalandfetalmetabolomicsrevealadifferentialfingerprintinpreeclampsiaversusfetalgrowthrestriction
AT fatimacrispi pairedmaternalandfetalmetabolomicsrevealadifferentialfingerprintinpreeclampsiaversusfetalgrowthrestriction
_version_ 1718378008505483264