Automated scoring of pre-REM sleep in mice with deep learning
Abstract Reliable automation of the labor-intensive manual task of scoring animal sleep can facilitate the analysis of long-term sleep studies. In recent years, deep-learning-based systems, which learn optimal features from the data, increased scoring accuracies for the classical sleep stages of Wak...
Enregistré dans:
Auteurs principaux: | Niklas Grieger, Justus T. C. Schwabedal, Stefanie Wendel, Yvonne Ritze, Stephan Bialonski |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d6db134aed5c42e18027c61b042aff8c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Finger Twitches are More Frequent in REM Sleep Than in Non-REM Sleep
par: Reiter AM, et autres
Publié: (2020) -
A probabilistic model for the ultradian timing of REM sleep in mice.
par: Sung-Ho Park, et autres
Publié: (2021) -
Regulation of REM and Non-REM Sleep by Periaqueductal GABAergic Neurons
par: Franz Weber, et autres
Publié: (2018) -
MC-SleepNet: Large-scale Sleep Stage Scoring in Mice by Deep Neural Networks
par: Masato Yamabe, et autres
Publié: (2019) -
Cardiac Autonomic Dysfunction Is Associated with Severity of REM Sleep without Atonia in Isolated REM Sleep Behavior Disorder
par: Sooyeoun You, et autres
Publié: (2021)