Machine learning assisted prediction of the Young’s modulus of compositionally complex alloys
Abstract We identify compositionally complex alloys (CCAs) that offer exceptional mechanical properties for elevated temperature applications by employing machine learning (ML) in conjunction with rapid synthesis and testing of alloys for validation to accelerate alloy design. The advantages of this...
Guardado en:
Autores principales: | Hrishabh Khakurel, M. F. N. Taufique, Ankit Roy, Ganesh Balasubramanian, Gaoyuan Ouyang, Jun Cui, Duane D. Johnson, Ram Devanathan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d6e2398d05ad4fa1a7a1bef2dc4dd12f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A machine learning aided interpretable model for rupture strength prediction in Fe-based martensitic and austenitic alloys
por: Osman Mamun, et al.
Publicado: (2021) -
Mid-term results of a new femoral prosthesis using Ti-Nb-Sn alloy with low Young’s modulus
por: Daisuke Chiba, et al.
Publicado: (2021) -
Effect of Zirconia Nanofibers Structure Evolution on the Hardness and Young’s Modulus of Their Mats
por: Vyacheslav V. Rodaev, et al.
Publicado: (2021) -
Examining oxidation in β-NiAl and β-NiAl+Hf alloys by stochastic cellular automata simulations
por: Indranil Roy, et al.
Publicado: (2021) -
High-capacity optical long data memory based on enhanced Young’s modulus in nanoplasmonic hybrid glass composites
por: Qiming Zhang, et al.
Publicado: (2018)