A machine learning approach for efficient multi-dimensional integration
Abstract Many physics problems involve integration in multi-dimensional space whose analytic solution is not available. The integrals can be evaluated using numerical integration methods, but it requires a large computational cost in some cases, so an efficient algorithm plays an important role in s...
Guardado en:
Autor principal: | Boram Yoon |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d6f6aeb2505749ccbcc8199689dc48fa |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data
por: Peng-fei Ke, et al.
Publicado: (2021) -
Application of multi-omics data integration and machine learning approaches to identify epigenetic and transcriptomic differences between in vitro and in vivo produced bovine embryos.
por: Maria B Rabaglino, et al.
Publicado: (2021) -
Multi-feature fusion framework for sarcasm identification on twitter data: A machine learning based approach.
por: Christopher Ifeanyi Eke, et al.
Publicado: (2021) -
Bandgap prediction of two-dimensional materials using machine learning.
por: Yu Zhang, et al.
Publicado: (2021) -
An approach to rapidly assess sepsis through multi-biomarker host response using machine learning algorithm
por: Abha Umesh Sardesai, et al.
Publicado: (2021)