PEPN-GRN: A Petri net-based approach for the inference of gene regulatory networks from noisy gene expression data.

The inference of gene regulatory networks (GRNs) from expression data is a challenging problem in systems biology. The stochasticity or fluctuations in the biochemical processes that regulate the transcription process poses as one of the major challenges. In this paper, we propose a novel GRN infere...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Deepika Vatsa, Sumeet Agarwal
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/d704d6a144d74dddba90bf834e8a6246
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The inference of gene regulatory networks (GRNs) from expression data is a challenging problem in systems biology. The stochasticity or fluctuations in the biochemical processes that regulate the transcription process poses as one of the major challenges. In this paper, we propose a novel GRN inference approach, named the Probabilistic Extended Petri Net for Gene Regulatory Network (PEPN-GRN), for the inference of gene regulatory networks from noisy expression data. The proposed inference approach makes use of transition of discrete gene expression levels across adjacent time points as different evidence types that relate to the production or decay of genes. The paper examines three variants of the PEPN-GRN method, which mainly differ by the way the scores of network edges are computed using evidence types. The proposed method is evaluated on the benchmark DREAM4 in silico data sets and a real time series data set of E. coli from the DREAM5 challenge. The PEPN-GRN_v3 variant (the third variant of the PEPN-GRN approach) sought to learn the weights of evidence types in accordance with their contribution to the activation and inhibition gene regulation process. The learned weights help understand the time-shifted and inverted time-shifted relationship between regulator and target gene. Thus, PEPN-GRN_v3, along with the inference of network edges, also provides a functional understanding of the gene regulation process.