PEPN-GRN: A Petri net-based approach for the inference of gene regulatory networks from noisy gene expression data.
The inference of gene regulatory networks (GRNs) from expression data is a challenging problem in systems biology. The stochasticity or fluctuations in the biochemical processes that regulate the transcription process poses as one of the major challenges. In this paper, we propose a novel GRN infere...
Guardado en:
Autores principales: | Deepika Vatsa, Sumeet Agarwal |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d704d6a144d74dddba90bf834e8a6246 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Gene regulatory network inference from sparsely sampled noisy data
por: Atte Aalto, et al.
Publicado: (2020) -
KBoost: a new method to infer gene regulatory networks from gene expression data
por: Luis F. Iglesias-Martinez, et al.
Publicado: (2021) -
Online Activation and Deactivation of a Petri Net Supervisor
por: Sadok Rezig, et al.
Publicado: (2021) -
Petri Net computational modelling of Langerhans cell Interferon Regulatory Factor Network predicts their role in T cell activation
por: Marta E. Polak, et al.
Publicado: (2017) -
Inferring a transcriptional regulatory network from gene expression data using nonlinear manifold embedding.
por: Hossein Zare, et al.
Publicado: (2011)