Genetic programming for hydrological applications: to model or to forecast that is the question
Genetic programming (GP) is a widely used machine learning (ML) algorithm that has been applied in water resources science and engineering since its conception in the early 1990s. However, similar to other ML applications, the GP algorithm is often used as a data fitting tool rather than as a model...
Guardado en:
Autores principales: | Herath Mudiyanselage Viraj Vidura Herath, Jayashree Chadalawada, Vladan Babovic |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IWA Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d711d7302fe54ce1a470f710110acec0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Application study of IFAS and LSTM models on runoff simulation and flood prediction in the Tokachi River basin
por: Yue-Chao Chen, et al.
Publicado: (2021) -
Multi-time-scale input approaches for hourly-scale rainfall–runoff modeling based on recurrent neural networks
por: Kei Ishida, et al.
Publicado: (2021) -
Pemeringkatan Pencarian pada Buku Pedoman Akademik Filkom UB Menuju Merdeka Belajar dan Free E-Book Pembelajaran Sebagai Prototype Local Smart Micro Search Engine Menggunakan Algoritma Pagerank dan TF-IDF
por: Imam Cholissodin, et al.
Publicado: (2021) -
Klasifikasi Teks Hadis Bukhari Terjemahan Indonesia Menggunakan Recurrent Convolutional Neural Network (CRNN)
por: Muhammad Yuslan Abu Bakar, et al.
Publicado: (2021) -
Klasifikasi Kebutuhan Jumlah Produk Makanan Customer Menggunakan K-Means Clustering dengan Optimasi Pusat Awal Cluster Algoritma Genetika
por: Yudi Istianto, et al.
Publicado: (2021)