Model-Independent Lens Distortion Correction Based on Sub-Pixel Phase Encoding
Lens distortion can introduce deviations in visual measurement and positioning. The distortion can be minimized by optimizing the lens and selecting high-quality optical glass, but it cannot be completely eliminated. Most existing correction methods are based on accurate distortion models and stable...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d72a0a88691240d8995c57e5e2995ae0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d72a0a88691240d8995c57e5e2995ae0 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d72a0a88691240d8995c57e5e2995ae02021-11-25T18:56:41ZModel-Independent Lens Distortion Correction Based on Sub-Pixel Phase Encoding10.3390/s212274651424-8220https://doaj.org/article/d72a0a88691240d8995c57e5e2995ae02021-11-01T00:00:00Zhttps://www.mdpi.com/1424-8220/21/22/7465https://doaj.org/toc/1424-8220Lens distortion can introduce deviations in visual measurement and positioning. The distortion can be minimized by optimizing the lens and selecting high-quality optical glass, but it cannot be completely eliminated. Most existing correction methods are based on accurate distortion models and stable image characteristics. However, the distortion is usually a mixture of the radial distortion and the tangential distortion of the lens group, which makes it difficult for the mathematical model to accurately fit the non-uniform distortion. This paper proposes a new model-independent lens complex distortion correction method. Taking the horizontal and vertical stripe pattern as the calibration target, the sub-pixel value distribution visualizes the image distortion, and the correction parameters are directly obtained from the pixel distribution. A quantitative evaluation method suitable for model-independent methods is proposed. The method only calculates the error based on the characteristic points of the corrected picture itself. Experiments show that this method can accurately correct distortion with only 8 pictures, with an error of 0.39 pixels, which provides a simple method for complex lens distortion correction.Pengbo XiongShaokai WangWeibo WangQixin YeShujiao YeMDPI AGarticlecamera calibrationfringe patternphase encodingmodel-independent methodChemical technologyTP1-1185ENSensors, Vol 21, Iss 7465, p 7465 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
camera calibration fringe pattern phase encoding model-independent method Chemical technology TP1-1185 |
spellingShingle |
camera calibration fringe pattern phase encoding model-independent method Chemical technology TP1-1185 Pengbo Xiong Shaokai Wang Weibo Wang Qixin Ye Shujiao Ye Model-Independent Lens Distortion Correction Based on Sub-Pixel Phase Encoding |
description |
Lens distortion can introduce deviations in visual measurement and positioning. The distortion can be minimized by optimizing the lens and selecting high-quality optical glass, but it cannot be completely eliminated. Most existing correction methods are based on accurate distortion models and stable image characteristics. However, the distortion is usually a mixture of the radial distortion and the tangential distortion of the lens group, which makes it difficult for the mathematical model to accurately fit the non-uniform distortion. This paper proposes a new model-independent lens complex distortion correction method. Taking the horizontal and vertical stripe pattern as the calibration target, the sub-pixel value distribution visualizes the image distortion, and the correction parameters are directly obtained from the pixel distribution. A quantitative evaluation method suitable for model-independent methods is proposed. The method only calculates the error based on the characteristic points of the corrected picture itself. Experiments show that this method can accurately correct distortion with only 8 pictures, with an error of 0.39 pixels, which provides a simple method for complex lens distortion correction. |
format |
article |
author |
Pengbo Xiong Shaokai Wang Weibo Wang Qixin Ye Shujiao Ye |
author_facet |
Pengbo Xiong Shaokai Wang Weibo Wang Qixin Ye Shujiao Ye |
author_sort |
Pengbo Xiong |
title |
Model-Independent Lens Distortion Correction Based on Sub-Pixel Phase Encoding |
title_short |
Model-Independent Lens Distortion Correction Based on Sub-Pixel Phase Encoding |
title_full |
Model-Independent Lens Distortion Correction Based on Sub-Pixel Phase Encoding |
title_fullStr |
Model-Independent Lens Distortion Correction Based on Sub-Pixel Phase Encoding |
title_full_unstemmed |
Model-Independent Lens Distortion Correction Based on Sub-Pixel Phase Encoding |
title_sort |
model-independent lens distortion correction based on sub-pixel phase encoding |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/d72a0a88691240d8995c57e5e2995ae0 |
work_keys_str_mv |
AT pengboxiong modelindependentlensdistortioncorrectionbasedonsubpixelphaseencoding AT shaokaiwang modelindependentlensdistortioncorrectionbasedonsubpixelphaseencoding AT weibowang modelindependentlensdistortioncorrectionbasedonsubpixelphaseencoding AT qixinye modelindependentlensdistortioncorrectionbasedonsubpixelphaseencoding AT shujiaoye modelindependentlensdistortioncorrectionbasedonsubpixelphaseencoding |
_version_ |
1718410556403089408 |