Deep learning for universal linear embeddings of nonlinear dynamics

It is often advantageous to transform a strongly nonlinear system into a linear one in order to simplify its analysis for prediction and control. Here the authors combine dynamical systems with deep learning to identify these hard-to-find transformations.

Guardado en:
Detalles Bibliográficos
Autores principales: Bethany Lusch, J. Nathan Kutz, Steven L. Brunton
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/d72f7d260a5d4c2a905fed768a9492b8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d72f7d260a5d4c2a905fed768a9492b8
record_format dspace
spelling oai:doaj.org-article:d72f7d260a5d4c2a905fed768a9492b82021-12-02T16:57:00ZDeep learning for universal linear embeddings of nonlinear dynamics10.1038/s41467-018-07210-02041-1723https://doaj.org/article/d72f7d260a5d4c2a905fed768a9492b82018-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-07210-0https://doaj.org/toc/2041-1723It is often advantageous to transform a strongly nonlinear system into a linear one in order to simplify its analysis for prediction and control. Here the authors combine dynamical systems with deep learning to identify these hard-to-find transformations.Bethany LuschJ. Nathan KutzSteven L. BruntonNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-10 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Bethany Lusch
J. Nathan Kutz
Steven L. Brunton
Deep learning for universal linear embeddings of nonlinear dynamics
description It is often advantageous to transform a strongly nonlinear system into a linear one in order to simplify its analysis for prediction and control. Here the authors combine dynamical systems with deep learning to identify these hard-to-find transformations.
format article
author Bethany Lusch
J. Nathan Kutz
Steven L. Brunton
author_facet Bethany Lusch
J. Nathan Kutz
Steven L. Brunton
author_sort Bethany Lusch
title Deep learning for universal linear embeddings of nonlinear dynamics
title_short Deep learning for universal linear embeddings of nonlinear dynamics
title_full Deep learning for universal linear embeddings of nonlinear dynamics
title_fullStr Deep learning for universal linear embeddings of nonlinear dynamics
title_full_unstemmed Deep learning for universal linear embeddings of nonlinear dynamics
title_sort deep learning for universal linear embeddings of nonlinear dynamics
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/d72f7d260a5d4c2a905fed768a9492b8
work_keys_str_mv AT bethanylusch deeplearningforuniversallinearembeddingsofnonlineardynamics
AT jnathankutz deeplearningforuniversallinearembeddingsofnonlineardynamics
AT stevenlbrunton deeplearningforuniversallinearembeddingsofnonlineardynamics
_version_ 1718382650375274496