Shear stress induces endothelial-to-mesenchymal transition via the transcription factor Snail

Abstract Blood flow influences atherosclerosis by generating wall shear stress, which alters endothelial cell (EC) physiology. Low shear stress induces dedifferentiation of EC through a process termed endothelial-to-mesenchymal transition (EndMT). The mechanisms underlying shear stress-regulation of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Marwa M. Mahmoud, Jovana Serbanovic-Canic, Shuang Feng, Celine Souilhol, Rouyu Xing, Sarah Hsiao, Akiko Mammoto, Jing Chen, Markus Ariaans, Sheila E. Francis, Kim Van der Heiden, Victoria Ridger, Paul C. Evans
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/d73073520d3c4c1ea3aaec80eeedf382
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d73073520d3c4c1ea3aaec80eeedf382
record_format dspace
spelling oai:doaj.org-article:d73073520d3c4c1ea3aaec80eeedf3822021-12-02T12:32:29ZShear stress induces endothelial-to-mesenchymal transition via the transcription factor Snail10.1038/s41598-017-03532-z2045-2322https://doaj.org/article/d73073520d3c4c1ea3aaec80eeedf3822017-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-03532-zhttps://doaj.org/toc/2045-2322Abstract Blood flow influences atherosclerosis by generating wall shear stress, which alters endothelial cell (EC) physiology. Low shear stress induces dedifferentiation of EC through a process termed endothelial-to-mesenchymal transition (EndMT). The mechanisms underlying shear stress-regulation of EndMT are uncertain. Here we investigated the role of the transcription factor Snail in low shear stress-induced EndMT. Studies of cultured EC exposed to flow revealed that low shear stress induced Snail expression. Using gene silencing it was demonstrated that Snail positively regulated the expression of EndMT markers (Slug, N-cadherin, α-SMA) in EC exposed to low shear stress. Gene silencing also revealed that Snail enhanced the permeability of endothelial monolayers to macromolecules by promoting EC proliferation and migration. En face staining of the murine aorta or carotid arteries modified with flow-altering cuffs demonstrated that Snail was expressed preferentially at low shear stress sites that are predisposed to atherosclerosis. Snail was also expressed in EC overlying atherosclerotic plaques in coronary arteries from patients with ischemic heart disease implying a role in human arterial disease. We conclude that Snail is an essential driver of EndMT under low shear stress conditions and may promote early atherogenesis by enhancing vascular permeability.Marwa M. MahmoudJovana Serbanovic-CanicShuang FengCeline SouilholRouyu XingSarah HsiaoAkiko MammotoJing ChenMarkus AriaansSheila E. FrancisKim Van der HeidenVictoria RidgerPaul C. EvansNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-12 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Marwa M. Mahmoud
Jovana Serbanovic-Canic
Shuang Feng
Celine Souilhol
Rouyu Xing
Sarah Hsiao
Akiko Mammoto
Jing Chen
Markus Ariaans
Sheila E. Francis
Kim Van der Heiden
Victoria Ridger
Paul C. Evans
Shear stress induces endothelial-to-mesenchymal transition via the transcription factor Snail
description Abstract Blood flow influences atherosclerosis by generating wall shear stress, which alters endothelial cell (EC) physiology. Low shear stress induces dedifferentiation of EC through a process termed endothelial-to-mesenchymal transition (EndMT). The mechanisms underlying shear stress-regulation of EndMT are uncertain. Here we investigated the role of the transcription factor Snail in low shear stress-induced EndMT. Studies of cultured EC exposed to flow revealed that low shear stress induced Snail expression. Using gene silencing it was demonstrated that Snail positively regulated the expression of EndMT markers (Slug, N-cadherin, α-SMA) in EC exposed to low shear stress. Gene silencing also revealed that Snail enhanced the permeability of endothelial monolayers to macromolecules by promoting EC proliferation and migration. En face staining of the murine aorta or carotid arteries modified with flow-altering cuffs demonstrated that Snail was expressed preferentially at low shear stress sites that are predisposed to atherosclerosis. Snail was also expressed in EC overlying atherosclerotic plaques in coronary arteries from patients with ischemic heart disease implying a role in human arterial disease. We conclude that Snail is an essential driver of EndMT under low shear stress conditions and may promote early atherogenesis by enhancing vascular permeability.
format article
author Marwa M. Mahmoud
Jovana Serbanovic-Canic
Shuang Feng
Celine Souilhol
Rouyu Xing
Sarah Hsiao
Akiko Mammoto
Jing Chen
Markus Ariaans
Sheila E. Francis
Kim Van der Heiden
Victoria Ridger
Paul C. Evans
author_facet Marwa M. Mahmoud
Jovana Serbanovic-Canic
Shuang Feng
Celine Souilhol
Rouyu Xing
Sarah Hsiao
Akiko Mammoto
Jing Chen
Markus Ariaans
Sheila E. Francis
Kim Van der Heiden
Victoria Ridger
Paul C. Evans
author_sort Marwa M. Mahmoud
title Shear stress induces endothelial-to-mesenchymal transition via the transcription factor Snail
title_short Shear stress induces endothelial-to-mesenchymal transition via the transcription factor Snail
title_full Shear stress induces endothelial-to-mesenchymal transition via the transcription factor Snail
title_fullStr Shear stress induces endothelial-to-mesenchymal transition via the transcription factor Snail
title_full_unstemmed Shear stress induces endothelial-to-mesenchymal transition via the transcription factor Snail
title_sort shear stress induces endothelial-to-mesenchymal transition via the transcription factor snail
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/d73073520d3c4c1ea3aaec80eeedf382
work_keys_str_mv AT marwammahmoud shearstressinducesendothelialtomesenchymaltransitionviathetranscriptionfactorsnail
AT jovanaserbanoviccanic shearstressinducesendothelialtomesenchymaltransitionviathetranscriptionfactorsnail
AT shuangfeng shearstressinducesendothelialtomesenchymaltransitionviathetranscriptionfactorsnail
AT celinesouilhol shearstressinducesendothelialtomesenchymaltransitionviathetranscriptionfactorsnail
AT rouyuxing shearstressinducesendothelialtomesenchymaltransitionviathetranscriptionfactorsnail
AT sarahhsiao shearstressinducesendothelialtomesenchymaltransitionviathetranscriptionfactorsnail
AT akikomammoto shearstressinducesendothelialtomesenchymaltransitionviathetranscriptionfactorsnail
AT jingchen shearstressinducesendothelialtomesenchymaltransitionviathetranscriptionfactorsnail
AT markusariaans shearstressinducesendothelialtomesenchymaltransitionviathetranscriptionfactorsnail
AT sheilaefrancis shearstressinducesendothelialtomesenchymaltransitionviathetranscriptionfactorsnail
AT kimvanderheiden shearstressinducesendothelialtomesenchymaltransitionviathetranscriptionfactorsnail
AT victoriaridger shearstressinducesendothelialtomesenchymaltransitionviathetranscriptionfactorsnail
AT paulcevans shearstressinducesendothelialtomesenchymaltransitionviathetranscriptionfactorsnail
_version_ 1718394065960042496