A deep learning method for HLA imputation and trans-ethnic MHC fine-mapping of type 1 diabetes
Human leukocyte antigen (HLA) genes contribute to risk of many complex traits, yet understanding inter-ethnic heterogeneity is computationally challenging. Here, the authors develop DEEP*HLA for imputation of HLA genotypes and show its ability to disentangle HLA variant risk effects in diverse popul...
Guardado en:
Autores principales: | Tatsuhiko Naito, Ken Suzuki, Jun Hirata, Yoichiro Kamatani, Koichi Matsuda, Tatsushi Toda, Yukinori Okada |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d7317882897f4f4785597fe336ab7a96 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Fine mapping of MHC region in lung cancer highlights independent susceptibility loci by ethnicity
por: Aida Ferreiro-Iglesias, et al.
Publicado: (2018) -
Accurate imputation of human leukocyte antigens with CookHLA
por: Seungho Cook, et al.
Publicado: (2021) -
Dimensionality reduction reveals fine-scale structure in the Japanese population with consequences for polygenic risk prediction
por: Saori Sakaue, et al.
Publicado: (2020) -
Association of HLA-DQ trans-heterodimers with prevalence of type 1 diabetes mellitus in Buryat ethnic group
por: Olga Nikolaevna Ivanova, et al.
Publicado: (2012) -
New susceptibility and resistance HLA-DP alleles to HBV-related diseases identified by a trans-ethnic association study in Asia.
por: Nao Nishida, et al.
Publicado: (2014)