Bactericidal metabolites from Phellinus noxius HN-1 against Microcystis aeruginosa
Abstract Harmful algal blooms cause serious problems worldwide due to large quantities of cyanotoxins produced by cyanobacteria in eutrophic water. In this study, a new compound named 2-(3, 4-dihydroxy-2-methoxyphenyl)-1, 3-benzodioxole-5-carbaldehyde (Compound 1), together with one known compound,...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d737c3e057544bdc957c86595f7d5da5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Harmful algal blooms cause serious problems worldwide due to large quantities of cyanotoxins produced by cyanobacteria in eutrophic water. In this study, a new compound named 2-(3, 4-dihydroxy-2-methoxyphenyl)-1, 3-benzodioxole-5-carbaldehyde (Compound 1), together with one known compound, 3, 4-dihydroxybenzalacetone (DBL), was purified from Phellinus noxius HN-1 (CCTCC M 2016242). Compound 1 and DBL displayed activity against the cyanobacteria Microcystis aeruginosa with a half maximal effective concentration of 21 and 5 μg/mL, respectively. Scanning electron and transmission electron microscopic observations showed that the compounds caused serious damage and significant lysis to M. aeruginosa cells. qRT-PCR assay indicated that compound 1 and DBL exposure up-regulated the expression of gene mcyB and down-regulated the expression of genes ftsZ, psbA1, and glmS in M. aeruginosa. This study provides the first evidence of bactericidal activity of a new compound and DBL. In summary, our results suggest that compound 1 and DBL might be developed as naturally-based biocontrol agents. |
---|