Corrigendum to the paper “Equivalence of the existence of best proximity points and best proximity pairs for cyclic and noncyclic nonexpansive mappings”

The purpose of this short note is to present a correction of the proof of the main result given in the paper “Equivalence of the existence of best proximity points and best proximity pairs for cyclic and noncyclic nonexpansive mappings,” Demonstr. Math. 53 (2020), 38–43.

Guardado en:
Detalles Bibliográficos
Autor principal: Gabeleh Moosa
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/d73908afb9da4602bb4e45f1eee6a86c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d73908afb9da4602bb4e45f1eee6a86c
record_format dspace
spelling oai:doaj.org-article:d73908afb9da4602bb4e45f1eee6a86c2021-12-05T14:10:45ZCorrigendum to the paper “Equivalence of the existence of best proximity points and best proximity pairs for cyclic and noncyclic nonexpansive mappings”2391-466110.1515/dema-2021-0007https://doaj.org/article/d73908afb9da4602bb4e45f1eee6a86c2021-04-01T00:00:00Zhttps://doi.org/10.1515/dema-2021-0007https://doaj.org/toc/2391-4661The purpose of this short note is to present a correction of the proof of the main result given in the paper “Equivalence of the existence of best proximity points and best proximity pairs for cyclic and noncyclic nonexpansive mappings,” Demonstr. Math. 53 (2020), 38–43.Gabeleh MoosaDe Gruyterarticlebest proximity (point) pairuniformly convex banach spacenoncyclic (cyclic) contraction47h0946b20MathematicsQA1-939ENDemonstratio Mathematica, Vol 54, Iss 1, Pp 9-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic best proximity (point) pair
uniformly convex banach space
noncyclic (cyclic) contraction
47h09
46b20
Mathematics
QA1-939
spellingShingle best proximity (point) pair
uniformly convex banach space
noncyclic (cyclic) contraction
47h09
46b20
Mathematics
QA1-939
Gabeleh Moosa
Corrigendum to the paper “Equivalence of the existence of best proximity points and best proximity pairs for cyclic and noncyclic nonexpansive mappings”
description The purpose of this short note is to present a correction of the proof of the main result given in the paper “Equivalence of the existence of best proximity points and best proximity pairs for cyclic and noncyclic nonexpansive mappings,” Demonstr. Math. 53 (2020), 38–43.
format article
author Gabeleh Moosa
author_facet Gabeleh Moosa
author_sort Gabeleh Moosa
title Corrigendum to the paper “Equivalence of the existence of best proximity points and best proximity pairs for cyclic and noncyclic nonexpansive mappings”
title_short Corrigendum to the paper “Equivalence of the existence of best proximity points and best proximity pairs for cyclic and noncyclic nonexpansive mappings”
title_full Corrigendum to the paper “Equivalence of the existence of best proximity points and best proximity pairs for cyclic and noncyclic nonexpansive mappings”
title_fullStr Corrigendum to the paper “Equivalence of the existence of best proximity points and best proximity pairs for cyclic and noncyclic nonexpansive mappings”
title_full_unstemmed Corrigendum to the paper “Equivalence of the existence of best proximity points and best proximity pairs for cyclic and noncyclic nonexpansive mappings”
title_sort corrigendum to the paper “equivalence of the existence of best proximity points and best proximity pairs for cyclic and noncyclic nonexpansive mappings”
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/d73908afb9da4602bb4e45f1eee6a86c
work_keys_str_mv AT gabelehmoosa corrigendumtothepaperequivalenceoftheexistenceofbestproximitypointsandbestproximitypairsforcyclicandnoncyclicnonexpansivemappings
_version_ 1718371771384594432