Modeling and interpreting hydrological responses of sustainable urban drainage systems with explainable machine learning methods
<p>Sustainable urban drainage systems (SuDS) are decentralized stormwater management practices that mimic natural drainage processes. The hydrological processes of SuDS are often modeled using process-based models. However, it can require considerable effort to set up these models. This study...
Guardado en:
Autores principales: | Y. Yang, T. F. M. Chui |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Copernicus Publications
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d74218fc57844b30b8cd618e99c0c64b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
On the selection of precipitation products for the regionalisation of hydrological model parameters
por: O. M. Baez-Villanueva, et al.
Publicado: (2021) -
Gravity as a tool to improve the hydrologic mass budget in karstic areas
por: T. Pivetta, et al.
Publicado: (2021) -
Characterization of soil moisture response patterns and hillslope hydrological processes through a self-organizing map
por: E. Lee, et al.
Publicado: (2021) -
Technical note: PMR – a proxy metric to assess hydrological model robustness in a changing climate
por: P. Royer-Gaspard, et al.
Publicado: (2021) -
Evaluating different machine learning methods to simulate runoff from extensive green roofs
por: E. M. H. Abdalla, et al.
Publicado: (2021)