Bagging-gradient boosting decision tree based milling cutter wear status prediction modelling

Article Highlights Candidate parameter sets are extracted from multi-domain (time, frequency, and time–frequency). Topmost significant features are screened by XGBoost selection, and balanced via SMOTE technology. Bagging idea is introduced for parallel calculation of the gradient boosting decision...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Weiping Xu, Wendi Li, Yao Zhang, Taihua Zhang, Huawei Chen
Formato: article
Lenguaje:EN
Publicado: Springer 2021
Materias:
Q
T
Acceso en línea:https://doaj.org/article/d76eb77c3a604a2a8d809187d47ebc3c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Article Highlights Candidate parameter sets are extracted from multi-domain (time, frequency, and time–frequency). Topmost significant features are screened by XGBoost selection, and balanced via SMOTE technology. Bagging idea is introduced for parallel calculation of the gradient boosting decision tree and to improve generalization ability of the prediction model.