Bagging-gradient boosting decision tree based milling cutter wear status prediction modelling
Article Highlights Candidate parameter sets are extracted from multi-domain (time, frequency, and time–frequency). Topmost significant features are screened by XGBoost selection, and balanced via SMOTE technology. Bagging idea is introduced for parallel calculation of the gradient boosting decision...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Springer
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d76eb77c3a604a2a8d809187d47ebc3c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d76eb77c3a604a2a8d809187d47ebc3c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d76eb77c3a604a2a8d809187d47ebc3c2021-11-21T12:12:34ZBagging-gradient boosting decision tree based milling cutter wear status prediction modelling10.1007/s42452-021-04856-22523-39632523-3971https://doaj.org/article/d76eb77c3a604a2a8d809187d47ebc3c2021-11-01T00:00:00Zhttps://doi.org/10.1007/s42452-021-04856-2https://doaj.org/toc/2523-3963https://doaj.org/toc/2523-3971Article Highlights Candidate parameter sets are extracted from multi-domain (time, frequency, and time–frequency). Topmost significant features are screened by XGBoost selection, and balanced via SMOTE technology. Bagging idea is introduced for parallel calculation of the gradient boosting decision tree and to improve generalization ability of the prediction model.Weiping XuWendi LiYao ZhangTaihua ZhangHuawei ChenSpringerarticleWear condition predictionXGBoost feature selectionSMOTEBagging-GBDTScienceQTechnologyTENSN Applied Sciences, Vol 3, Iss 12, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Wear condition prediction XGBoost feature selection SMOTE Bagging-GBDT Science Q Technology T |
spellingShingle |
Wear condition prediction XGBoost feature selection SMOTE Bagging-GBDT Science Q Technology T Weiping Xu Wendi Li Yao Zhang Taihua Zhang Huawei Chen Bagging-gradient boosting decision tree based milling cutter wear status prediction modelling |
description |
Article Highlights Candidate parameter sets are extracted from multi-domain (time, frequency, and time–frequency). Topmost significant features are screened by XGBoost selection, and balanced via SMOTE technology. Bagging idea is introduced for parallel calculation of the gradient boosting decision tree and to improve generalization ability of the prediction model. |
format |
article |
author |
Weiping Xu Wendi Li Yao Zhang Taihua Zhang Huawei Chen |
author_facet |
Weiping Xu Wendi Li Yao Zhang Taihua Zhang Huawei Chen |
author_sort |
Weiping Xu |
title |
Bagging-gradient boosting decision tree based milling cutter wear status prediction modelling |
title_short |
Bagging-gradient boosting decision tree based milling cutter wear status prediction modelling |
title_full |
Bagging-gradient boosting decision tree based milling cutter wear status prediction modelling |
title_fullStr |
Bagging-gradient boosting decision tree based milling cutter wear status prediction modelling |
title_full_unstemmed |
Bagging-gradient boosting decision tree based milling cutter wear status prediction modelling |
title_sort |
bagging-gradient boosting decision tree based milling cutter wear status prediction modelling |
publisher |
Springer |
publishDate |
2021 |
url |
https://doaj.org/article/d76eb77c3a604a2a8d809187d47ebc3c |
work_keys_str_mv |
AT weipingxu bagginggradientboostingdecisiontreebasedmillingcutterwearstatuspredictionmodelling AT wendili bagginggradientboostingdecisiontreebasedmillingcutterwearstatuspredictionmodelling AT yaozhang bagginggradientboostingdecisiontreebasedmillingcutterwearstatuspredictionmodelling AT taihuazhang bagginggradientboostingdecisiontreebasedmillingcutterwearstatuspredictionmodelling AT huaweichen bagginggradientboostingdecisiontreebasedmillingcutterwearstatuspredictionmodelling |
_version_ |
1718419153426055168 |