Bagging-gradient boosting decision tree based milling cutter wear status prediction modelling

Article Highlights Candidate parameter sets are extracted from multi-domain (time, frequency, and time–frequency). Topmost significant features are screened by XGBoost selection, and balanced via SMOTE technology. Bagging idea is introduced for parallel calculation of the gradient boosting decision...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Weiping Xu, Wendi Li, Yao Zhang, Taihua Zhang, Huawei Chen
Formato: article
Lenguaje:EN
Publicado: Springer 2021
Materias:
Q
T
Acceso en línea:https://doaj.org/article/d76eb77c3a604a2a8d809187d47ebc3c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d76eb77c3a604a2a8d809187d47ebc3c
record_format dspace
spelling oai:doaj.org-article:d76eb77c3a604a2a8d809187d47ebc3c2021-11-21T12:12:34ZBagging-gradient boosting decision tree based milling cutter wear status prediction modelling10.1007/s42452-021-04856-22523-39632523-3971https://doaj.org/article/d76eb77c3a604a2a8d809187d47ebc3c2021-11-01T00:00:00Zhttps://doi.org/10.1007/s42452-021-04856-2https://doaj.org/toc/2523-3963https://doaj.org/toc/2523-3971Article Highlights Candidate parameter sets are extracted from multi-domain (time, frequency, and time–frequency). Topmost significant features are screened by XGBoost selection, and balanced via SMOTE technology. Bagging idea is introduced for parallel calculation of the gradient boosting decision tree and to improve generalization ability of the prediction model.Weiping XuWendi LiYao ZhangTaihua ZhangHuawei ChenSpringerarticleWear condition predictionXGBoost feature selectionSMOTEBagging-GBDTScienceQTechnologyTENSN Applied Sciences, Vol 3, Iss 12, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Wear condition prediction
XGBoost feature selection
SMOTE
Bagging-GBDT
Science
Q
Technology
T
spellingShingle Wear condition prediction
XGBoost feature selection
SMOTE
Bagging-GBDT
Science
Q
Technology
T
Weiping Xu
Wendi Li
Yao Zhang
Taihua Zhang
Huawei Chen
Bagging-gradient boosting decision tree based milling cutter wear status prediction modelling
description Article Highlights Candidate parameter sets are extracted from multi-domain (time, frequency, and time–frequency). Topmost significant features are screened by XGBoost selection, and balanced via SMOTE technology. Bagging idea is introduced for parallel calculation of the gradient boosting decision tree and to improve generalization ability of the prediction model.
format article
author Weiping Xu
Wendi Li
Yao Zhang
Taihua Zhang
Huawei Chen
author_facet Weiping Xu
Wendi Li
Yao Zhang
Taihua Zhang
Huawei Chen
author_sort Weiping Xu
title Bagging-gradient boosting decision tree based milling cutter wear status prediction modelling
title_short Bagging-gradient boosting decision tree based milling cutter wear status prediction modelling
title_full Bagging-gradient boosting decision tree based milling cutter wear status prediction modelling
title_fullStr Bagging-gradient boosting decision tree based milling cutter wear status prediction modelling
title_full_unstemmed Bagging-gradient boosting decision tree based milling cutter wear status prediction modelling
title_sort bagging-gradient boosting decision tree based milling cutter wear status prediction modelling
publisher Springer
publishDate 2021
url https://doaj.org/article/d76eb77c3a604a2a8d809187d47ebc3c
work_keys_str_mv AT weipingxu bagginggradientboostingdecisiontreebasedmillingcutterwearstatuspredictionmodelling
AT wendili bagginggradientboostingdecisiontreebasedmillingcutterwearstatuspredictionmodelling
AT yaozhang bagginggradientboostingdecisiontreebasedmillingcutterwearstatuspredictionmodelling
AT taihuazhang bagginggradientboostingdecisiontreebasedmillingcutterwearstatuspredictionmodelling
AT huaweichen bagginggradientboostingdecisiontreebasedmillingcutterwearstatuspredictionmodelling
_version_ 1718419153426055168