Bagging-gradient boosting decision tree based milling cutter wear status prediction modelling
Article Highlights Candidate parameter sets are extracted from multi-domain (time, frequency, and time–frequency). Topmost significant features are screened by XGBoost selection, and balanced via SMOTE technology. Bagging idea is introduced for parallel calculation of the gradient boosting decision...
Guardado en:
Autores principales: | Weiping Xu, Wendi Li, Yao Zhang, Taihua Zhang, Huawei Chen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Springer
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d76eb77c3a604a2a8d809187d47ebc3c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predicting coastal algal blooms with environmental factors by machine learning methods
por: Peixuan Yu, et al.
Publicado: (2021) -
Bagging and Boosting Ensemble Classifiers for Classification of Multispectral, Hyperspectral and PolSAR Data: A Comparative Evaluation
por: Hamid Jafarzadeh, et al.
Publicado: (2021) -
Efficient Seismic Stability Analysis of Embankment Slopes Subjected to Water Level Changes Using Gradient Boosting Algorithms
por: Luqi Wang, et al.
Publicado: (2021) -
Punk Pioneers: Chicana Alice Bag as a Case in Point
por: Soraya Alonso Alconada, et al.
Publicado: (2017) -
A study on greenish pattern of Indian consumers with special reference to their plastic bag usage behavior
por: G. Madan Mohan, et al.
Publicado: (2021)