Bagging-gradient boosting decision tree based milling cutter wear status prediction modelling

Article Highlights Candidate parameter sets are extracted from multi-domain (time, frequency, and time–frequency). Topmost significant features are screened by XGBoost selection, and balanced via SMOTE technology. Bagging idea is introduced for parallel calculation of the gradient boosting decision...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Weiping Xu, Wendi Li, Yao Zhang, Taihua Zhang, Huawei Chen
Format: article
Langue:EN
Publié: Springer 2021
Sujets:
Q
T
Accès en ligne:https://doaj.org/article/d76eb77c3a604a2a8d809187d47ebc3c
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!