Bagging-gradient boosting decision tree based milling cutter wear status prediction modelling
Article Highlights Candidate parameter sets are extracted from multi-domain (time, frequency, and time–frequency). Topmost significant features are screened by XGBoost selection, and balanced via SMOTE technology. Bagging idea is introduced for parallel calculation of the gradient boosting decision...
Enregistré dans:
Auteurs principaux: | , , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Springer
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d76eb77c3a604a2a8d809187d47ebc3c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|