Deep anomaly detection of seizures with paired stereoelectroencephalography and video recordings
Abstract Real-time seizure detection is a resource intensive process as it requires continuous monitoring of patients on stereoelectroencephalography. This study improves real-time seizure detection in drug resistant epilepsy (DRE) patients by developing patient-specific deep learning models that ut...
Guardado en:
Autores principales: | Michael L. Martini, Aly A. Valliani, Claire Sun, Anthony B. Costa, Shan Zhao, Fedor Panov, Saadi Ghatan, Kanaka Rajan, Eric Karl Oermann |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d773d42d7cf9413393bd341e9a21fbe5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep Learning of Simultaneous Intracranial and Scalp EEG for Prediction, Detection, and Lateralization of Mesial Temporal Lobe Seizures
por: Zan Li, et al.
Publicado: (2021) -
Stereoelectroencephalography in epilepsy, cognitive neurophysiology, and psychiatric disease: safety, efficacy, and place in therapy
por: Youngerman BE, et al.
Publicado: (2019) -
An Approach to Detect Anomaly in Video Using Deep Generative Network
por: Savath Saypadith, et al.
Publicado: (2021) -
Anomaly detection in video sequences: A benchmark and computational model
por: Boyang Wan, et al.
Publicado: (2021) -
Electrophysiological Activity and Brain Network During Recovery of Propofol Anesthesia: A Stereoelectroencephalography-Based Analysis in Patients With Intractable Epilepsy—An Exploratory Research
por: Tao Liang, et al.
Publicado: (2021)