Multimodal neuromarkers in schizophrenia via cognition-guided MRI fusion

Cognitive impairment is a feature of many psychiatric diseases. Here the authors aimed to identify multimodal neuromarkers that can be used to quantify and predict cognitive performance in individuals with schizophrenia using three different features of MRI and three independent cohorts.

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Jing Sui, Shile Qi, Theo G. M. van Erp, Juan Bustillo, Rongtao Jiang, Dongdong Lin, Jessica A. Turner, Eswar Damaraju, Andrew R. Mayer, Yue Cui, Zening Fu, Yuhui Du, Jiayu Chen, Steven G. Potkin, Adrian Preda, Daniel H. Mathalon, Judith M. Ford, James Voyvodic, Bryon A. Mueller, Aysenil Belger, Sarah C. McEwen, Daniel S. O’Leary, Agnes McMahon, Tianzi Jiang, Vince D. Calhoun
Format: article
Langue:EN
Publié: Nature Portfolio 2018
Sujets:
Q
Accès en ligne:https://doaj.org/article/d774852e00fe40de9fd00e3eb900f16d
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Cognitive impairment is a feature of many psychiatric diseases. Here the authors aimed to identify multimodal neuromarkers that can be used to quantify and predict cognitive performance in individuals with schizophrenia using three different features of MRI and three independent cohorts.