Machine Learning Based on Morphological Features Enables Classification of Primary Intestinal T-Cell Lymphomas
The aim of this study was to investigate the feasibility of using machine learning techniques based on morphological features in classifying two subtypes of primary intestinal T-cell lymphomas (PITLs) defined according to the WHO criteria: monomorphic epitheliotropic intestinal T-cell lymphoma (MEIT...
Guardado en:
Autores principales: | Wei-Hsiang Yu, Chih-Hao Li, Ren-Ching Wang, Chao-Yuan Yeh, Shih-Sung Chuang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d780586919ad4d8ca7742f4a7cb443e0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Evaluation of the factors explaining the use of agricultural land: A machine learning and model-agnostic approach
por: Cláudia M. Viana, et al.
Publicado: (2021) -
Editorial: AI-Enabled Data Science for COVID-19
por: Da Yan, et al.
Publicado: (2021) -
Clinical outcomes following intravitreal methotrexate for primary vitreoretinal lymphoma
por: Casey L. Anthony, et al.
Publicado: (2021) -
Deep neural networks for global wildfire susceptibility modelling
por: Guoli Zhang, et al.
Publicado: (2021) -
Feature-Based Interpretation of the Deep Neural Network
por: Eun-Hun Lee, et al.
Publicado: (2021)