High density lipoproteins mediate in vivo protection against staphylococcal phenol-soluble modulins
Abstract Staphylococcus aureus virulence has been associated with the production of phenol-soluble modulins (PSMs). These PSMs have distinct virulence functions and are known to activate, attract and lyse neutrophils. These PSM-associated biological functions are inhibited by lipoproteins in vitro....
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d79e59c52eb7439aaa4c53dd098bcdb8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Staphylococcus aureus virulence has been associated with the production of phenol-soluble modulins (PSMs). These PSMs have distinct virulence functions and are known to activate, attract and lyse neutrophils. These PSM-associated biological functions are inhibited by lipoproteins in vitro. We set out to address whether lipoproteins neutralize staphylococcal PSM-associated virulence in experimental animal models. Serum from both LCAT an ABCA1 knockout mice strains which are characterised by near absence of high-density lipoprotein (HDL) levels, was shown to fail to protect against PSM-induced neutrophil activation and lysis in vitro. Importantly, PSM-induced peritonitis in LCAT−/− mice resulted in increased lysis of resident peritoneal macrophages and enhanced neutrophil recruitment into the peritoneal cavity. Notably, LCAT−/− mice were more likely to succumb to staphylococcal bloodstream infections in a PSM-dependent manner. Plasma from homozygous carriers of ABCA1 variants characterized by very low HDL-cholesterol levels, was found to be less protective against PSM-mediated biological functions compared to healthy humans. Therefore, we conclude that lipoproteins present in blood can protect against staphylococcal PSMs, the key virulence factor of community-associated methicillin resistant S. aureus. |
---|