Application study of IFAS and LSTM models on runoff simulation and flood prediction in the Tokachi River basin
Floods are often caused by short-term heavy rainfall. An Integrated Flood Analysis System (IFAS) model is good at runoff simulation and a Long Short-Term Memory (LSTM) model is good at learning massive data and realizing rainfall forecast. In this paper, the applicability of the IFAS model to runoff...
Guardado en:
Autores principales: | Yue-Chao Chen, Jia-Jia Gao, Zhao-Hui Bin, Jia-Zhong Qian, Rui-Liang Pei, Hua Zhu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IWA Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d7a6a546d17a464dbe2282f9e8308b26 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multi-time-scale input approaches for hourly-scale rainfall–runoff modeling based on recurrent neural networks
por: Kei Ishida, et al.
Publicado: (2021) -
Analysis of Gradient Vanishing of RNNs and Performance Comparison
por: Seol-Hyun Noh
Publicado: (2021) -
Genetic programming for hydrological applications: to model or to forecast that is the question
por: Herath Mudiyanselage Viraj Vidura Herath, et al.
Publicado: (2021) -
Anomaly Detection for the Centralised Elasticsearch Service at CERN
por: Jennifer R. Andersson, et al.
Publicado: (2021) -
Relationship Between the Cultivation and Incentive Mechanism of Senior Educational Talents
por: Jialin Zuo, et al.
Publicado: (2021)