Author Correction: Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR
A correction to this article has been published and is linked from the HTML version of this paper. The error has been fixed in the paper.
Guardado en:
Autores principales: | Stefano Trebeschi, Joost J. M. van Griethuysen, Doenja M. J. Lambregts, Max J. Lahaye, Chintan Parmar, Frans C. H. Bakers, Nicky H. G. M. Peters, Regina G. H. Beets-Tan, Hugo J. W. L. Aerts |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d7a82e8761924ca18cef56a36bc8f91b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR
por: Stefano Trebeschi, et al.
Publicado: (2017) -
MRI-based clinical-radiomics model predicts tumor response before treatment in locally advanced rectal cancer
por: Andrea Delli Pizzi, et al.
Publicado: (2021) -
Differentiating malignant from benign salivary gland lesions: a multiparametric non-contrast MR imaging approach
por: Koji Takumi, et al.
Publicado: (2021) -
Application of multiparametric MR imaging to predict the diversification of renal function in miR29a-mediated diabetic nephropathy
por: Chia-Hao Su, et al.
Publicado: (2021) -
A Multiparametric MR-Based RadioFusionOmics Model with Robust Capabilities of Differentiating Glioblastoma Multiforme from Solitary Brain Metastasis
por: Jialiang Wu, et al.
Publicado: (2021)