Machine learning based differentiation of glioblastoma from brain metastasis using MRI derived radiomics
Abstract Few studies have addressed radiomics based differentiation of Glioblastoma (GBM) and intracranial metastatic disease (IMD). However, the effect of different tumor masks, comparison of single versus multiparametric MRI (mp-MRI) or select combination of sequences remains undefined. We cross-c...
Guardado en:
Autores principales: | Sarv Priya, Yanan Liu, Caitlin Ward, Nam H. Le, Neetu Soni, Ravishankar Pillenahalli Maheshwarappa, Varun Monga, Honghai Zhang, Milan Sonka, Girish Bathla |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d7acdcc65ddc4b73a1ab61f4d0524d3f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Radiomics side experiments and DAFIT approach in identifying pulmonary hypertension using Cardiac MRI derived radiomics based machine learning models
por: Sarv Priya, et al.
Publicado: (2021) -
A Predictive Clinical-Radiomics Nomogram for Survival Prediction of Glioblastoma Using MRI
por: Samy Ammari, et al.
Publicado: (2021) -
Radiomics-based neural network predicts recurrence patterns in glioblastoma using dynamic susceptibility contrast-enhanced MRI
por: Ka Young Shim, et al.
Publicado: (2021) -
Value of the Application of CE-MRI Radiomics and Machine Learning in Preoperative Prediction of Sentinel Lymph Node Metastasis in Breast Cancer
por: Yadi Zhu, et al.
Publicado: (2021) -
Lymph node metastasis prediction of papillary thyroid carcinoma based on transfer learning radiomics
por: Jinhua Yu, et al.
Publicado: (2020)