Stable isotope turnover rates and fractionation in captive California yellowtail (Seriola dorsalis): insights for application to field studies

Abstract Stable isotope analysis (SIA) measurements from long-term captivity studies provide required parameters for interpretation of consumer SIA data. We raised young-of-the-year (14–19 cm) California yellowtail (Seriola dorsalis) on a low δ15N and δ13C diet (pellet aquaculture feed) for 525 days...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Daniel J. Madigan, Owyn E. Snodgrass, John R. Hyde, Heidi Dewar
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/d7b94f084fea44c6ab79dfb26aa28131
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Stable isotope analysis (SIA) measurements from long-term captivity studies provide required parameters for interpretation of consumer SIA data. We raised young-of-the-year (14–19 cm) California yellowtail (Seriola dorsalis) on a low δ15N and δ13C diet (pellet aquaculture feed) for 525 days, then switched to a high δ15N and δ13C diet (mackerel and squid) for 753 days. Yellowtail muscle was sequentially sampled from each individual after the diet switch (0 to 753 days) and analyzed for δ15N and δ13C, allowing for calculation of diet-tissue discrimination factors (DTDFs) from two isotopically different diets (low δ15N and δ13C: pellets; high δ15N and δ13C: fish/squid) and turnover rates of 15N and 13C. DTDFs were diet dependent: Δ15N = 5.1‰, Δ13C = 3.6‰ for pellets and Δ15N = 2.6‰, Δ13C = 1.3‰ for fish/squid. Half-life estimates from 15N and 13C turnover rates for pooled yellowtail were 181 days and 341 days, respectively, but varied considerably by individual (15N: 99–239 d; 13C: 158–899 d). Quantifying DTDFs supports isotopic approaches to field data that assume isotopic steady-state conditions (e.g., mixing models for diet reconstruction). Characterizing and quantifying turnover rates allow for estimates of diet/habitat shifts and “isotopic clock” approaches, and observed inter-individual variability suggests the need for large datasets in field studies. We provide diet-dependent DTDFs and growth effects on turnover rates, and associated error around these parameters, for application to field-collected SIA data from other large teleosts.