A review and comparison of breast tumor cell nuclei segmentation performances using deep convolutional neural networks
Abstract Breast cancer is currently the second most common cause of cancer-related death in women. Presently, the clinical benchmark in cancer diagnosis is tissue biopsy examination. However, the manual process of histopathological analysis is laborious, time-consuming, and limited by the quality of...
Guardado en:
Autores principales: | Andrew Lagree, Majidreza Mohebpour, Nicholas Meti, Khadijeh Saednia, Fang-I. Lu, Elzbieta Slodkowska, Sonal Gandhi, Eileen Rakovitch, Alex Shenfield, Ali Sadeghi-Naini, William T. Tran |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d7bbeb5b75be4d00a2d11586bba4830e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A convolutional neural network segments yeast microscopy images with high accuracy
por: Nicola Dietler, et al.
Publicado: (2020) -
Automated Training of Deep Convolutional Neural Networks for Cell Segmentation
por: Sajith Kecheril Sadanandan, et al.
Publicado: (2017) -
Fully automatic wound segmentation with deep convolutional neural networks
por: Chuanbo Wang, et al.
Publicado: (2020) -
IMAGE SEGMENTATION AND OBJECT RECOGNITION BASED ON CONVOLUTIONAL NEURAL NETWORK TECHNOLOGY
por: A.I. Godunov, et al.
Publicado: (2021) -
Deep Hybrid Convolutional Neural Network for Segmentation of Melanoma Skin Lesion
por: Cheng-Hong Yang, et al.
Publicado: (2021)