A quantum material spintronic resonator
Abstract In a spintronic resonator a radio-frequency signal excites spin dynamics that can be detected by the spin-diode effect. Such resonators are generally based on ferromagnetic metals and their responses to spin torques. New and richer functionalities can potentially be achieved with quantum ma...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d7bdc98b8cdc430dbd62e7a408df62c2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d7bdc98b8cdc430dbd62e7a408df62c2 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d7bdc98b8cdc430dbd62e7a408df62c22021-12-02T17:55:09ZA quantum material spintronic resonator10.1038/s41598-021-93404-42045-2322https://doaj.org/article/d7bdc98b8cdc430dbd62e7a408df62c22021-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-93404-4https://doaj.org/toc/2045-2322Abstract In a spintronic resonator a radio-frequency signal excites spin dynamics that can be detected by the spin-diode effect. Such resonators are generally based on ferromagnetic metals and their responses to spin torques. New and richer functionalities can potentially be achieved with quantum materials, specifically with transition metal oxides that have phase transitions that can endow a spintronic resonator with hysteresis and memory. Here we present the spin torque ferromagnetic resonance characteristics of a hybrid metal-insulator-transition oxide/ ferromagnetic metal nanoconstriction. Our samples incorporate $${\mathrm {V}}_2{\mathrm {O}}_3$$ V 2 O 3 , with Ni, Permalloy ( $${\hbox {Ni}}_{80}{\hbox {Fe}}_{20}$$ Ni 80 Fe 20 ) and Pt layers patterned into a nanoconstriction geometry. The first order phase transition in $${\mathrm {V}}_2{\mathrm {O}}_3$$ V 2 O 3 is shown to lead to systematic changes in the resonance response and hysteretic current control of the ferromagnetic resonance frequency. Further, the output signal can be systematically varied by locally changing the state of the $${\mathrm {V}}_2{\mathrm {O}}_3$$ V 2 O 3 with a dc current. These results demonstrate new spintronic resonator functionalities of interest for neuromorphic computing.Jun-Wen XuYizhang ChenNicolás M. VargasPavel SalevPavel N. LapaJuan TrastoyJulie GrollierIvan K. SchullerAndrew D. KentNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-6 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Jun-Wen Xu Yizhang Chen Nicolás M. Vargas Pavel Salev Pavel N. Lapa Juan Trastoy Julie Grollier Ivan K. Schuller Andrew D. Kent A quantum material spintronic resonator |
description |
Abstract In a spintronic resonator a radio-frequency signal excites spin dynamics that can be detected by the spin-diode effect. Such resonators are generally based on ferromagnetic metals and their responses to spin torques. New and richer functionalities can potentially be achieved with quantum materials, specifically with transition metal oxides that have phase transitions that can endow a spintronic resonator with hysteresis and memory. Here we present the spin torque ferromagnetic resonance characteristics of a hybrid metal-insulator-transition oxide/ ferromagnetic metal nanoconstriction. Our samples incorporate $${\mathrm {V}}_2{\mathrm {O}}_3$$ V 2 O 3 , with Ni, Permalloy ( $${\hbox {Ni}}_{80}{\hbox {Fe}}_{20}$$ Ni 80 Fe 20 ) and Pt layers patterned into a nanoconstriction geometry. The first order phase transition in $${\mathrm {V}}_2{\mathrm {O}}_3$$ V 2 O 3 is shown to lead to systematic changes in the resonance response and hysteretic current control of the ferromagnetic resonance frequency. Further, the output signal can be systematically varied by locally changing the state of the $${\mathrm {V}}_2{\mathrm {O}}_3$$ V 2 O 3 with a dc current. These results demonstrate new spintronic resonator functionalities of interest for neuromorphic computing. |
format |
article |
author |
Jun-Wen Xu Yizhang Chen Nicolás M. Vargas Pavel Salev Pavel N. Lapa Juan Trastoy Julie Grollier Ivan K. Schuller Andrew D. Kent |
author_facet |
Jun-Wen Xu Yizhang Chen Nicolás M. Vargas Pavel Salev Pavel N. Lapa Juan Trastoy Julie Grollier Ivan K. Schuller Andrew D. Kent |
author_sort |
Jun-Wen Xu |
title |
A quantum material spintronic resonator |
title_short |
A quantum material spintronic resonator |
title_full |
A quantum material spintronic resonator |
title_fullStr |
A quantum material spintronic resonator |
title_full_unstemmed |
A quantum material spintronic resonator |
title_sort |
quantum material spintronic resonator |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/d7bdc98b8cdc430dbd62e7a408df62c2 |
work_keys_str_mv |
AT junwenxu aquantummaterialspintronicresonator AT yizhangchen aquantummaterialspintronicresonator AT nicolasmvargas aquantummaterialspintronicresonator AT pavelsalev aquantummaterialspintronicresonator AT pavelnlapa aquantummaterialspintronicresonator AT juantrastoy aquantummaterialspintronicresonator AT juliegrollier aquantummaterialspintronicresonator AT ivankschuller aquantummaterialspintronicresonator AT andrewdkent aquantummaterialspintronicresonator AT junwenxu quantummaterialspintronicresonator AT yizhangchen quantummaterialspintronicresonator AT nicolasmvargas quantummaterialspintronicresonator AT pavelsalev quantummaterialspintronicresonator AT pavelnlapa quantummaterialspintronicresonator AT juantrastoy quantummaterialspintronicresonator AT juliegrollier quantummaterialspintronicresonator AT ivankschuller quantummaterialspintronicresonator AT andrewdkent quantummaterialspintronicresonator |
_version_ |
1718379136964100096 |