A quantum material spintronic resonator

Abstract In a spintronic resonator a radio-frequency signal excites spin dynamics that can be detected by the spin-diode effect. Such resonators are generally based on ferromagnetic metals and their responses to spin torques. New and richer functionalities can potentially be achieved with quantum ma...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jun-Wen Xu, Yizhang Chen, Nicolás M. Vargas, Pavel Salev, Pavel N. Lapa, Juan Trastoy, Julie Grollier, Ivan K. Schuller, Andrew D. Kent
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/d7bdc98b8cdc430dbd62e7a408df62c2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d7bdc98b8cdc430dbd62e7a408df62c2
record_format dspace
spelling oai:doaj.org-article:d7bdc98b8cdc430dbd62e7a408df62c22021-12-02T17:55:09ZA quantum material spintronic resonator10.1038/s41598-021-93404-42045-2322https://doaj.org/article/d7bdc98b8cdc430dbd62e7a408df62c22021-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-93404-4https://doaj.org/toc/2045-2322Abstract In a spintronic resonator a radio-frequency signal excites spin dynamics that can be detected by the spin-diode effect. Such resonators are generally based on ferromagnetic metals and their responses to spin torques. New and richer functionalities can potentially be achieved with quantum materials, specifically with transition metal oxides that have phase transitions that can endow a spintronic resonator with hysteresis and memory. Here we present the spin torque ferromagnetic resonance characteristics of a hybrid metal-insulator-transition oxide/ ferromagnetic metal nanoconstriction. Our samples incorporate $${\mathrm {V}}_2{\mathrm {O}}_3$$ V 2 O 3 , with Ni, Permalloy ( $${\hbox {Ni}}_{80}{\hbox {Fe}}_{20}$$ Ni 80 Fe 20 ) and Pt layers patterned into a nanoconstriction geometry. The first order phase transition in $${\mathrm {V}}_2{\mathrm {O}}_3$$ V 2 O 3 is shown to lead to systematic changes in the resonance response and hysteretic current control of the ferromagnetic resonance frequency. Further, the output signal can be systematically varied by locally changing the state of the $${\mathrm {V}}_2{\mathrm {O}}_3$$ V 2 O 3 with a dc current. These results demonstrate new spintronic resonator functionalities of interest for neuromorphic computing.Jun-Wen XuYizhang ChenNicolás M. VargasPavel SalevPavel N. LapaJuan TrastoyJulie GrollierIvan K. SchullerAndrew D. KentNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-6 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Jun-Wen Xu
Yizhang Chen
Nicolás M. Vargas
Pavel Salev
Pavel N. Lapa
Juan Trastoy
Julie Grollier
Ivan K. Schuller
Andrew D. Kent
A quantum material spintronic resonator
description Abstract In a spintronic resonator a radio-frequency signal excites spin dynamics that can be detected by the spin-diode effect. Such resonators are generally based on ferromagnetic metals and their responses to spin torques. New and richer functionalities can potentially be achieved with quantum materials, specifically with transition metal oxides that have phase transitions that can endow a spintronic resonator with hysteresis and memory. Here we present the spin torque ferromagnetic resonance characteristics of a hybrid metal-insulator-transition oxide/ ferromagnetic metal nanoconstriction. Our samples incorporate $${\mathrm {V}}_2{\mathrm {O}}_3$$ V 2 O 3 , with Ni, Permalloy ( $${\hbox {Ni}}_{80}{\hbox {Fe}}_{20}$$ Ni 80 Fe 20 ) and Pt layers patterned into a nanoconstriction geometry. The first order phase transition in $${\mathrm {V}}_2{\mathrm {O}}_3$$ V 2 O 3 is shown to lead to systematic changes in the resonance response and hysteretic current control of the ferromagnetic resonance frequency. Further, the output signal can be systematically varied by locally changing the state of the $${\mathrm {V}}_2{\mathrm {O}}_3$$ V 2 O 3 with a dc current. These results demonstrate new spintronic resonator functionalities of interest for neuromorphic computing.
format article
author Jun-Wen Xu
Yizhang Chen
Nicolás M. Vargas
Pavel Salev
Pavel N. Lapa
Juan Trastoy
Julie Grollier
Ivan K. Schuller
Andrew D. Kent
author_facet Jun-Wen Xu
Yizhang Chen
Nicolás M. Vargas
Pavel Salev
Pavel N. Lapa
Juan Trastoy
Julie Grollier
Ivan K. Schuller
Andrew D. Kent
author_sort Jun-Wen Xu
title A quantum material spintronic resonator
title_short A quantum material spintronic resonator
title_full A quantum material spintronic resonator
title_fullStr A quantum material spintronic resonator
title_full_unstemmed A quantum material spintronic resonator
title_sort quantum material spintronic resonator
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/d7bdc98b8cdc430dbd62e7a408df62c2
work_keys_str_mv AT junwenxu aquantummaterialspintronicresonator
AT yizhangchen aquantummaterialspintronicresonator
AT nicolasmvargas aquantummaterialspintronicresonator
AT pavelsalev aquantummaterialspintronicresonator
AT pavelnlapa aquantummaterialspintronicresonator
AT juantrastoy aquantummaterialspintronicresonator
AT juliegrollier aquantummaterialspintronicresonator
AT ivankschuller aquantummaterialspintronicresonator
AT andrewdkent aquantummaterialspintronicresonator
AT junwenxu quantummaterialspintronicresonator
AT yizhangchen quantummaterialspintronicresonator
AT nicolasmvargas quantummaterialspintronicresonator
AT pavelsalev quantummaterialspintronicresonator
AT pavelnlapa quantummaterialspintronicresonator
AT juantrastoy quantummaterialspintronicresonator
AT juliegrollier quantummaterialspintronicresonator
AT ivankschuller quantummaterialspintronicresonator
AT andrewdkent quantummaterialspintronicresonator
_version_ 1718379136964100096