SiGMoiD: A super-statistical generative model for binary data.
In modern computational biology, there is great interest in building probabilistic models to describe collections of a large number of co-varying binary variables. However, current approaches to build generative models rely on modelers' identification of constraints and are computationally expe...
Guardado en:
Autores principales: | Xiaochuan Zhao, Germán Plata, Purushottam D Dixit |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d7f5ee881f6c4f3ba30cfda4a58586f1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Stochastic binary synapses having sigmoidal cumulative distribution functions for unsupervised learning with spike timing-dependent plasticity
por: Yoshifumi Nishi, et al.
Publicado: (2021) -
No tension between assembly models of super massive black hole binaries and pulsar observations
por: Hannah Middleton, et al.
Publicado: (2018) -
Planar binary-phase lens for super-oscillatory optical hollow needles
por: Gang Chen, et al.
Publicado: (2017) -
Unusual achalasic sigmoid esophagus
por: Narendra Pandit, et al.
Publicado: (2019) -
Sigmoid volvulus in a teenager
por: Chukwubuike Kevin Emeka
Publicado: (2022)