SiGMoiD: A super-statistical generative model for binary data.
In modern computational biology, there is great interest in building probabilistic models to describe collections of a large number of co-varying binary variables. However, current approaches to build generative models rely on modelers' identification of constraints and are computationally expe...
Enregistré dans:
Auteurs principaux: | Xiaochuan Zhao, Germán Plata, Purushottam D Dixit |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d7f5ee881f6c4f3ba30cfda4a58586f1 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Stochastic binary synapses having sigmoidal cumulative distribution functions for unsupervised learning with spike timing-dependent plasticity
par: Yoshifumi Nishi, et autres
Publié: (2021) -
No tension between assembly models of super massive black hole binaries and pulsar observations
par: Hannah Middleton, et autres
Publié: (2018) -
Planar binary-phase lens for super-oscillatory optical hollow needles
par: Gang Chen, et autres
Publié: (2017) -
Unusual achalasic sigmoid esophagus
par: Narendra Pandit, et autres
Publié: (2019) -
Sigmoid volvulus in a teenager
par: Chukwubuike Kevin Emeka
Publié: (2022)