Identification of Scopoletin and Chlorogenic Acid as Potential Active Components in Sunflower Calathide Enzymatically Hydrolyzed Extract towards Hyperuricemia

It is known that sunflower (<i>Helianthus annuus</i> L.) calathide enzymatically hydrolyzed extract (SCHE) contributes to the regulation of serum uric acid (UA); however, evidence regarding its bioactive components and mechanism are lacking. We identified two water-soluble components (sc...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Huining Dai, Shuai Lv, Xueqi Fu, Wannan Li
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
T
Acceso en línea:https://doaj.org/article/d7fbf9f76ec14803b0209415aead44b2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d7fbf9f76ec14803b0209415aead44b2
record_format dspace
spelling oai:doaj.org-article:d7fbf9f76ec14803b0209415aead44b22021-11-11T15:20:07ZIdentification of Scopoletin and Chlorogenic Acid as Potential Active Components in Sunflower Calathide Enzymatically Hydrolyzed Extract towards Hyperuricemia10.3390/app1121103062076-3417https://doaj.org/article/d7fbf9f76ec14803b0209415aead44b22021-11-01T00:00:00Zhttps://www.mdpi.com/2076-3417/11/21/10306https://doaj.org/toc/2076-3417It is known that sunflower (<i>Helianthus annuus</i> L.) calathide enzymatically hydrolyzed extract (SCHE) contributes to the regulation of serum uric acid (UA); however, evidence regarding its bioactive components and mechanism are lacking. We identified two water-soluble components (scopoletin and chlorogenic acid) that are abundant in sunflower calathide, especially evaluated for the inhibition of xanthine oxidase (XO) and the expression levels of urate transporters with SCHE. Molecular docking of a chlorogenic acid–XO complex was more stable than that of the Scopoletin–XO, and its binding pockets, which closed the Mo = S center, was similar to xanthine pockets. Moreover, chlorogenic acid exhibited stronger inhibition than that of the scopoletin below 260 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi mathvariant="sans-serif">μ</mi><mi mathvariant="normal">M</mi></mrow></mrow></semantics></math></inline-formula>, despite the IC<sub>50</sub> of scopoletin (577.7 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi mathvariant="sans-serif">μ</mi><mi mathvariant="normal">M</mi></mrow></mrow></semantics></math></inline-formula>) being lower than that chlorogenic acid (844.7 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi mathvariant="sans-serif">μ</mi><mi mathvariant="normal">M</mi></mrow></mrow></semantics></math></inline-formula>) on the UA generation assessed by a spectrophotometer in vitro. It revealed that chlorogenic acid and scopoletin were competitive inhibitors of XO. In addition, the SCHE (300 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>g/mL) and chlorogenic acid (0.75 mM) obviously inhibited urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) expression levels, while scopoletin significantly upregulated the expression of GLUT9. To summarize, chlorogenic acid served a crucial role in UA regulation consistent with the SCHE and functioned as an important ingredient of SCHE. The strategic analysis of SCHE combined with scopoletin and chlorogenic acid may contribute to the development of food supplemental alternatives on UA metabolism and the reduction of agricultural byproduct waste.Huining DaiShuai LvXueqi FuWannan LiMDPI AGarticlesunflower calathidescopoletinchlorogenic acidurate transportersxanthine oxidase inhibitormolecular dockingTechnologyTEngineering (General). Civil engineering (General)TA1-2040Biology (General)QH301-705.5PhysicsQC1-999ChemistryQD1-999ENApplied Sciences, Vol 11, Iss 10306, p 10306 (2021)
institution DOAJ
collection DOAJ
language EN
topic sunflower calathide
scopoletin
chlorogenic acid
urate transporters
xanthine oxidase inhibitor
molecular docking
Technology
T
Engineering (General). Civil engineering (General)
TA1-2040
Biology (General)
QH301-705.5
Physics
QC1-999
Chemistry
QD1-999
spellingShingle sunflower calathide
scopoletin
chlorogenic acid
urate transporters
xanthine oxidase inhibitor
molecular docking
Technology
T
Engineering (General). Civil engineering (General)
TA1-2040
Biology (General)
QH301-705.5
Physics
QC1-999
Chemistry
QD1-999
Huining Dai
Shuai Lv
Xueqi Fu
Wannan Li
Identification of Scopoletin and Chlorogenic Acid as Potential Active Components in Sunflower Calathide Enzymatically Hydrolyzed Extract towards Hyperuricemia
description It is known that sunflower (<i>Helianthus annuus</i> L.) calathide enzymatically hydrolyzed extract (SCHE) contributes to the regulation of serum uric acid (UA); however, evidence regarding its bioactive components and mechanism are lacking. We identified two water-soluble components (scopoletin and chlorogenic acid) that are abundant in sunflower calathide, especially evaluated for the inhibition of xanthine oxidase (XO) and the expression levels of urate transporters with SCHE. Molecular docking of a chlorogenic acid–XO complex was more stable than that of the Scopoletin–XO, and its binding pockets, which closed the Mo = S center, was similar to xanthine pockets. Moreover, chlorogenic acid exhibited stronger inhibition than that of the scopoletin below 260 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi mathvariant="sans-serif">μ</mi><mi mathvariant="normal">M</mi></mrow></mrow></semantics></math></inline-formula>, despite the IC<sub>50</sub> of scopoletin (577.7 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi mathvariant="sans-serif">μ</mi><mi mathvariant="normal">M</mi></mrow></mrow></semantics></math></inline-formula>) being lower than that chlorogenic acid (844.7 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi mathvariant="sans-serif">μ</mi><mi mathvariant="normal">M</mi></mrow></mrow></semantics></math></inline-formula>) on the UA generation assessed by a spectrophotometer in vitro. It revealed that chlorogenic acid and scopoletin were competitive inhibitors of XO. In addition, the SCHE (300 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>g/mL) and chlorogenic acid (0.75 mM) obviously inhibited urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) expression levels, while scopoletin significantly upregulated the expression of GLUT9. To summarize, chlorogenic acid served a crucial role in UA regulation consistent with the SCHE and functioned as an important ingredient of SCHE. The strategic analysis of SCHE combined with scopoletin and chlorogenic acid may contribute to the development of food supplemental alternatives on UA metabolism and the reduction of agricultural byproduct waste.
format article
author Huining Dai
Shuai Lv
Xueqi Fu
Wannan Li
author_facet Huining Dai
Shuai Lv
Xueqi Fu
Wannan Li
author_sort Huining Dai
title Identification of Scopoletin and Chlorogenic Acid as Potential Active Components in Sunflower Calathide Enzymatically Hydrolyzed Extract towards Hyperuricemia
title_short Identification of Scopoletin and Chlorogenic Acid as Potential Active Components in Sunflower Calathide Enzymatically Hydrolyzed Extract towards Hyperuricemia
title_full Identification of Scopoletin and Chlorogenic Acid as Potential Active Components in Sunflower Calathide Enzymatically Hydrolyzed Extract towards Hyperuricemia
title_fullStr Identification of Scopoletin and Chlorogenic Acid as Potential Active Components in Sunflower Calathide Enzymatically Hydrolyzed Extract towards Hyperuricemia
title_full_unstemmed Identification of Scopoletin and Chlorogenic Acid as Potential Active Components in Sunflower Calathide Enzymatically Hydrolyzed Extract towards Hyperuricemia
title_sort identification of scopoletin and chlorogenic acid as potential active components in sunflower calathide enzymatically hydrolyzed extract towards hyperuricemia
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/d7fbf9f76ec14803b0209415aead44b2
work_keys_str_mv AT huiningdai identificationofscopoletinandchlorogenicacidaspotentialactivecomponentsinsunflowercalathideenzymaticallyhydrolyzedextracttowardshyperuricemia
AT shuailv identificationofscopoletinandchlorogenicacidaspotentialactivecomponentsinsunflowercalathideenzymaticallyhydrolyzedextracttowardshyperuricemia
AT xueqifu identificationofscopoletinandchlorogenicacidaspotentialactivecomponentsinsunflowercalathideenzymaticallyhydrolyzedextracttowardshyperuricemia
AT wannanli identificationofscopoletinandchlorogenicacidaspotentialactivecomponentsinsunflowercalathideenzymaticallyhydrolyzedextracttowardshyperuricemia
_version_ 1718435395962667008