3-Nitropropionic acid induces ovarian oxidative stress and impairs follicle in mouse.
Oxidative stress induces many serious reproductive diseases in female mammals and thus poses a serious threat to reproductive health. However, the relationship between reactive oxygen species (ROS)-induced oxidative stress and follicular development, oocyte and embryo quality is not clear. The aim o...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d80cce757a29487ab54e81d9bff65d31 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d80cce757a29487ab54e81d9bff65d31 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d80cce757a29487ab54e81d9bff65d312021-11-18T08:33:48Z3-Nitropropionic acid induces ovarian oxidative stress and impairs follicle in mouse.1932-620310.1371/journal.pone.0086589https://doaj.org/article/d80cce757a29487ab54e81d9bff65d312014-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24505260/?tool=EBIhttps://doaj.org/toc/1932-6203Oxidative stress induces many serious reproductive diseases in female mammals and thus poses a serious threat to reproductive health. However, the relationship between reactive oxygen species (ROS)-induced oxidative stress and follicular development, oocyte and embryo quality is not clear. The aim of this study was to investigate the effect of ovarian oxidative stress on the health of follicle and oocyte development. Female ICR mice were dosed with 3-nitropropionic acid (3-NPA) at three different concentrations (6.25, 12.5 and 25 mg/kg) and saline (control) via continuous intraperitoneal injection for 7 days. The treatment with 12.5 mg/kg reduced the weight of mouse ovaries, and significantly increased ROS levels and the activities of antioxidant enzymes--total superoxide dismutase (T-SOD), glutathione peroxidase (GPx) and catalase (CAT)--in granulosa cells and ovarian tissues, but not in other tissues (brain, liver, kidney and spleen). The same treatment significantly increased the percentage of atretic large follicles, and reduced the number of large follicles, the number of ovulated oocytes, and the capacity for early embryonic development compared with controls. It also significantly decreased the ratio of Bcl-2 to Bax, while causing an increase in the mRNA expression of (SOD2, CAT and GP X) and ROS levels in granulosa cells. Collectively, these data indicate that 3-NPA induces granulosa cell apoptosis, large follicle atresia, and an increase of ROS levels in the ovary. Therefore, we have established an in vivo model of ovarian oxidative stress for studying the mechanism of resulting damage induced by free radicals and for the screening of novel antioxidants.Jia-Qing ZhangMing ShenCheng-Cheng ZhuFeng-Xiang YuZe-Qun LiuNazim AllyShao-Chen SunKui LiHong-Lin LiuPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 9, Iss 2, p e86589 (2014) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Jia-Qing Zhang Ming Shen Cheng-Cheng Zhu Feng-Xiang Yu Ze-Qun Liu Nazim Ally Shao-Chen Sun Kui Li Hong-Lin Liu 3-Nitropropionic acid induces ovarian oxidative stress and impairs follicle in mouse. |
description |
Oxidative stress induces many serious reproductive diseases in female mammals and thus poses a serious threat to reproductive health. However, the relationship between reactive oxygen species (ROS)-induced oxidative stress and follicular development, oocyte and embryo quality is not clear. The aim of this study was to investigate the effect of ovarian oxidative stress on the health of follicle and oocyte development. Female ICR mice were dosed with 3-nitropropionic acid (3-NPA) at three different concentrations (6.25, 12.5 and 25 mg/kg) and saline (control) via continuous intraperitoneal injection for 7 days. The treatment with 12.5 mg/kg reduced the weight of mouse ovaries, and significantly increased ROS levels and the activities of antioxidant enzymes--total superoxide dismutase (T-SOD), glutathione peroxidase (GPx) and catalase (CAT)--in granulosa cells and ovarian tissues, but not in other tissues (brain, liver, kidney and spleen). The same treatment significantly increased the percentage of atretic large follicles, and reduced the number of large follicles, the number of ovulated oocytes, and the capacity for early embryonic development compared with controls. It also significantly decreased the ratio of Bcl-2 to Bax, while causing an increase in the mRNA expression of (SOD2, CAT and GP X) and ROS levels in granulosa cells. Collectively, these data indicate that 3-NPA induces granulosa cell apoptosis, large follicle atresia, and an increase of ROS levels in the ovary. Therefore, we have established an in vivo model of ovarian oxidative stress for studying the mechanism of resulting damage induced by free radicals and for the screening of novel antioxidants. |
format |
article |
author |
Jia-Qing Zhang Ming Shen Cheng-Cheng Zhu Feng-Xiang Yu Ze-Qun Liu Nazim Ally Shao-Chen Sun Kui Li Hong-Lin Liu |
author_facet |
Jia-Qing Zhang Ming Shen Cheng-Cheng Zhu Feng-Xiang Yu Ze-Qun Liu Nazim Ally Shao-Chen Sun Kui Li Hong-Lin Liu |
author_sort |
Jia-Qing Zhang |
title |
3-Nitropropionic acid induces ovarian oxidative stress and impairs follicle in mouse. |
title_short |
3-Nitropropionic acid induces ovarian oxidative stress and impairs follicle in mouse. |
title_full |
3-Nitropropionic acid induces ovarian oxidative stress and impairs follicle in mouse. |
title_fullStr |
3-Nitropropionic acid induces ovarian oxidative stress and impairs follicle in mouse. |
title_full_unstemmed |
3-Nitropropionic acid induces ovarian oxidative stress and impairs follicle in mouse. |
title_sort |
3-nitropropionic acid induces ovarian oxidative stress and impairs follicle in mouse. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2014 |
url |
https://doaj.org/article/d80cce757a29487ab54e81d9bff65d31 |
work_keys_str_mv |
AT jiaqingzhang 3nitropropionicacidinducesovarianoxidativestressandimpairsfollicleinmouse AT mingshen 3nitropropionicacidinducesovarianoxidativestressandimpairsfollicleinmouse AT chengchengzhu 3nitropropionicacidinducesovarianoxidativestressandimpairsfollicleinmouse AT fengxiangyu 3nitropropionicacidinducesovarianoxidativestressandimpairsfollicleinmouse AT zequnliu 3nitropropionicacidinducesovarianoxidativestressandimpairsfollicleinmouse AT nazimally 3nitropropionicacidinducesovarianoxidativestressandimpairsfollicleinmouse AT shaochensun 3nitropropionicacidinducesovarianoxidativestressandimpairsfollicleinmouse AT kuili 3nitropropionicacidinducesovarianoxidativestressandimpairsfollicleinmouse AT honglinliu 3nitropropionicacidinducesovarianoxidativestressandimpairsfollicleinmouse |
_version_ |
1718421651009306624 |