siRNA Screening Identifies the Host Hexokinase 2 (HK2) Gene as an Important Hypoxia-Inducible Transcription Factor 1 (HIF-1) Target Gene in <named-content content-type="genus-species">Toxoplasma gondii</named-content>-Infected Cells

ABSTRACT Although it is established that oxygen availability regulates cellular metabolism and growth, little is known regarding how intracellular pathogens use host factors to grow at physiological oxygen levels. Therefore, large-scale human small interfering RNA screening was performed to identify...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Matthew T. Menendez, Crystal Teygong, Kristin Wade, Celia Florimond, Ira J. Blader
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2015
Materias:
Acceso en línea:https://doaj.org/article/d82378d4294242538f637a715e6ea518
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d82378d4294242538f637a715e6ea518
record_format dspace
spelling oai:doaj.org-article:d82378d4294242538f637a715e6ea5182021-11-15T15:49:02ZsiRNA Screening Identifies the Host Hexokinase 2 (HK2) Gene as an Important Hypoxia-Inducible Transcription Factor 1 (HIF-1) Target Gene in <named-content content-type="genus-species">Toxoplasma gondii</named-content>-Infected Cells10.1128/mBio.00462-152150-7511https://doaj.org/article/d82378d4294242538f637a715e6ea5182015-07-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.00462-15https://doaj.org/toc/2150-7511ABSTRACT Although it is established that oxygen availability regulates cellular metabolism and growth, little is known regarding how intracellular pathogens use host factors to grow at physiological oxygen levels. Therefore, large-scale human small interfering RNA screening was performed to identify host genes important for growth of the intracellular protozoan parasite Toxoplasma gondii at tissue oxygen tensions. Among the genes identified by this screen, we focused on the hexokinase 2 (HK2) gene because its expression is regulated by hypoxia-inducible transcription factor 1 (HIF-1), which is important for Toxoplasma growth. Toxoplasma increases host HK2 transcript and protein levels in a HIF-1-dependent manner. In addition, parasite growth at 3% oxygen is restored in HIF-1-deficient cells transfected with HK2 expression plasmids. Both HIF-1 activation and HK2 expression were accompanied by increases in host glycolytic flux, suggesting that enhanced HK2 expression in parasite-infected cells is functionally significant. Parasite dependence on host HK2 and HIF-1 expression is not restricted to transformed cell lines, as both are required for parasite growth in nontransformed C2C12 myoblasts and HK2 is upregulated in vivo following infection. While HK2 is normally associated with the cytoplasmic face of the outer mitochondrial membrane at physiological O2 levels, HK2 relocalizes to the host cytoplasm following infection, a process that is required for parasite growth at 3% oxygen. Taken together, our findings show that HIF-1-dependent expression and relocalization of HK2 represent a novel mechanism by which Toxoplasma establishes its replicative niche at tissue oxygen tensions. IMPORTANCE Little is known regarding how the host cell contributes to the survival of the intracellular parasite Toxoplasma gondii at oxygen levels that mimic those found in tissues. Our previous work showed that Toxoplasma activates the expression of an oxygen-regulated transcription factor that is required for growth. Here, we report that Toxoplasma regulates the abundance and activity of a key host metabolic enzyme, hexokinase 2, by activating HIF-1 and by promoting dissociation of hexokinase 2 from the mitochondrial membrane. Collectively, our data reveal HIF-1/hexokinase 2 as a novel target for an intracellular pathogen that acts by reprograming the host cell's metabolism to create an environment conducive for parasite replication at physiological oxygen levels.Matthew T. MenendezCrystal TeygongKristin WadeCelia FlorimondIra J. BladerAmerican Society for MicrobiologyarticleMicrobiologyQR1-502ENmBio, Vol 6, Iss 3 (2015)
institution DOAJ
collection DOAJ
language EN
topic Microbiology
QR1-502
spellingShingle Microbiology
QR1-502
Matthew T. Menendez
Crystal Teygong
Kristin Wade
Celia Florimond
Ira J. Blader
siRNA Screening Identifies the Host Hexokinase 2 (HK2) Gene as an Important Hypoxia-Inducible Transcription Factor 1 (HIF-1) Target Gene in <named-content content-type="genus-species">Toxoplasma gondii</named-content>-Infected Cells
description ABSTRACT Although it is established that oxygen availability regulates cellular metabolism and growth, little is known regarding how intracellular pathogens use host factors to grow at physiological oxygen levels. Therefore, large-scale human small interfering RNA screening was performed to identify host genes important for growth of the intracellular protozoan parasite Toxoplasma gondii at tissue oxygen tensions. Among the genes identified by this screen, we focused on the hexokinase 2 (HK2) gene because its expression is regulated by hypoxia-inducible transcription factor 1 (HIF-1), which is important for Toxoplasma growth. Toxoplasma increases host HK2 transcript and protein levels in a HIF-1-dependent manner. In addition, parasite growth at 3% oxygen is restored in HIF-1-deficient cells transfected with HK2 expression plasmids. Both HIF-1 activation and HK2 expression were accompanied by increases in host glycolytic flux, suggesting that enhanced HK2 expression in parasite-infected cells is functionally significant. Parasite dependence on host HK2 and HIF-1 expression is not restricted to transformed cell lines, as both are required for parasite growth in nontransformed C2C12 myoblasts and HK2 is upregulated in vivo following infection. While HK2 is normally associated with the cytoplasmic face of the outer mitochondrial membrane at physiological O2 levels, HK2 relocalizes to the host cytoplasm following infection, a process that is required for parasite growth at 3% oxygen. Taken together, our findings show that HIF-1-dependent expression and relocalization of HK2 represent a novel mechanism by which Toxoplasma establishes its replicative niche at tissue oxygen tensions. IMPORTANCE Little is known regarding how the host cell contributes to the survival of the intracellular parasite Toxoplasma gondii at oxygen levels that mimic those found in tissues. Our previous work showed that Toxoplasma activates the expression of an oxygen-regulated transcription factor that is required for growth. Here, we report that Toxoplasma regulates the abundance and activity of a key host metabolic enzyme, hexokinase 2, by activating HIF-1 and by promoting dissociation of hexokinase 2 from the mitochondrial membrane. Collectively, our data reveal HIF-1/hexokinase 2 as a novel target for an intracellular pathogen that acts by reprograming the host cell's metabolism to create an environment conducive for parasite replication at physiological oxygen levels.
format article
author Matthew T. Menendez
Crystal Teygong
Kristin Wade
Celia Florimond
Ira J. Blader
author_facet Matthew T. Menendez
Crystal Teygong
Kristin Wade
Celia Florimond
Ira J. Blader
author_sort Matthew T. Menendez
title siRNA Screening Identifies the Host Hexokinase 2 (HK2) Gene as an Important Hypoxia-Inducible Transcription Factor 1 (HIF-1) Target Gene in <named-content content-type="genus-species">Toxoplasma gondii</named-content>-Infected Cells
title_short siRNA Screening Identifies the Host Hexokinase 2 (HK2) Gene as an Important Hypoxia-Inducible Transcription Factor 1 (HIF-1) Target Gene in <named-content content-type="genus-species">Toxoplasma gondii</named-content>-Infected Cells
title_full siRNA Screening Identifies the Host Hexokinase 2 (HK2) Gene as an Important Hypoxia-Inducible Transcription Factor 1 (HIF-1) Target Gene in <named-content content-type="genus-species">Toxoplasma gondii</named-content>-Infected Cells
title_fullStr siRNA Screening Identifies the Host Hexokinase 2 (HK2) Gene as an Important Hypoxia-Inducible Transcription Factor 1 (HIF-1) Target Gene in <named-content content-type="genus-species">Toxoplasma gondii</named-content>-Infected Cells
title_full_unstemmed siRNA Screening Identifies the Host Hexokinase 2 (HK2) Gene as an Important Hypoxia-Inducible Transcription Factor 1 (HIF-1) Target Gene in <named-content content-type="genus-species">Toxoplasma gondii</named-content>-Infected Cells
title_sort sirna screening identifies the host hexokinase 2 (hk2) gene as an important hypoxia-inducible transcription factor 1 (hif-1) target gene in <named-content content-type="genus-species">toxoplasma gondii</named-content>-infected cells
publisher American Society for Microbiology
publishDate 2015
url https://doaj.org/article/d82378d4294242538f637a715e6ea518
work_keys_str_mv AT matthewtmenendez sirnascreeningidentifiesthehosthexokinase2hk2geneasanimportanthypoxiainducibletranscriptionfactor1hif1targetgeneinnamedcontentcontenttypegenusspeciestoxoplasmagondiinamedcontentinfectedcells
AT crystalteygong sirnascreeningidentifiesthehosthexokinase2hk2geneasanimportanthypoxiainducibletranscriptionfactor1hif1targetgeneinnamedcontentcontenttypegenusspeciestoxoplasmagondiinamedcontentinfectedcells
AT kristinwade sirnascreeningidentifiesthehosthexokinase2hk2geneasanimportanthypoxiainducibletranscriptionfactor1hif1targetgeneinnamedcontentcontenttypegenusspeciestoxoplasmagondiinamedcontentinfectedcells
AT celiaflorimond sirnascreeningidentifiesthehosthexokinase2hk2geneasanimportanthypoxiainducibletranscriptionfactor1hif1targetgeneinnamedcontentcontenttypegenusspeciestoxoplasmagondiinamedcontentinfectedcells
AT irajblader sirnascreeningidentifiesthehosthexokinase2hk2geneasanimportanthypoxiainducibletranscriptionfactor1hif1targetgeneinnamedcontentcontenttypegenusspeciestoxoplasmagondiinamedcontentinfectedcells
_version_ 1718427489712209920