Classifying Crop Types Using Two Generations of Hyperspectral Sensors (Hyperion and DESIS) with Machine Learning on the Cloud
Advances in spaceborne hyperspectral (HS) remote sensing, cloud-computing, and machine learning can help measure, model, map and monitor agricultural crops to address global food and water security issues, such as by providing accurate estimates of crop area and yield to model agricultural productiv...
Guardado en:
Autores principales: | Itiya Aneece, Prasad S. Thenkabail |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d82fdc9709be4ec697f98da8d86b968d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Clouds’ Microphysical Properties and Their Relationship with Lightning Activity in Northeast Brazil
por: Lizandro Pereira de Abreu, et al.
Publicado: (2021) -
Hyperspectral Remote Sensing Image Feature Representation Method Based on CAE-H with Nuclear Norm Constraint
por: Xiaodong Yu, et al.
Publicado: (2021) -
Identification and Level Discrimination of Waterlogging Stress in Winter Wheat Using Hyperspectral Remote Sensing
por: YANG Feifei, et al.
Publicado: (2021) -
Journal of Spectral Imaging
Publicado: (2017) -
Bagging and Boosting Ensemble Classifiers for Classification of Multispectral, Hyperspectral and PolSAR Data: A Comparative Evaluation
por: Hamid Jafarzadeh, et al.
Publicado: (2021)