Characteristics and Potential Inhalation Exposure Risks of Environmentally Persistent Free Radicals in Atmospheric Particulate Matter and Solid Fuel Combustion Particles in High Lung Cancer Incidence Area, China
Environmentally persistent free radicals (EPFRs) were previously considered an unrecognized composition of air pollutants and might help explain the long-standing medical mystery of why non-smokers develop tobacco-related diseases such as lung cancer. However, there is no investigated on EPFRs in Xu...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d8386e18a147473081d0bb845567a1e6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Environmentally persistent free radicals (EPFRs) were previously considered an unrecognized composition of air pollutants and might help explain the long-standing medical mystery of why non-smokers develop tobacco-related diseases such as lung cancer. However, there is no investigated on EPFRs in Xuanwei rural areas, especially in high prevalence of lung cancer areas. In this study, we selected six types of coal and three types of biomass in Xuanwei, then conducted simulated combustion, and six group of atmospheric particulate matters (APMs) to explore the content and particle size distribution pattern of EPFRs and a new health risk assessment method to evaluate the risk of EPFRs in PM for adults and children. Our results show that the contribution of EPFRs for biomass combustion, coal combustion and APMs were mainly distributed in the size range of <1.1 μm, which accounted for 76.15 ± 4.14%, 74.85 ± 10.76%, and 75.23 ± 8.18% of PM3.3. The mean g factors and ΔHp-p indicated that the EPFRs were mainly oxygen-centered radicals in PM in Xuanwei. The results suggest that the health risk of EPFRs is significantly increased when the particle size distribution of EPFRs is taken into account, and coal combustion particulate matter (174.70 ± 37.86 cigarettes for an adult, 66.39 ± 14.39 cigarettes per person per year for a child) is more hazardous to humans than biomass combustion particulate matter (69.41 ± 4.83 cigarettes for an adult, 26.37 ± 1.84 cigarettes per person per year for), followed by APMs (102.88 ± 39.99 cigarettes for an adult, 39.10 ±15.20 cigarettes per person per year for) in PM<sub>3.3</sub>. Our results provides a new perspective and evidence for revealing the reason for the high incidence of lung cancer in Xuanwei, China. |
---|