Novel Multidimensional Collaborative Filtering Algorithm Based on Improved Item Rating Prediction
Current data has the characteristics of complexity and low information density, which can be called the information sparse data. However, a large amount of data makes it difficult to analyse sparse data with traditional collaborative filtering recommendation algorithms, which may lead to low accurac...
Guardado en:
Autores principales: | Tongyan Li, Yingxiang Li, Chen Yi-Ping Phoebe |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d8398f96965444fcb55190d7cdfb23b2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Method of Recommending Physical Education Network Course Resources Based on Collaborative Filtering Technology
por: Zhihao Zhang
Publicado: (2021) -
Classification Algorithm-Based CT Imaging in Diagnosis of Acute Respiratory Distress Syndrome and Analysis of Pathogenic Factors
por: Liang Chen, et al.
Publicado: (2021) -
Surface Defect Detection of Seals Based on K-Means Clustering Algorithm and Particle Swarm Optimization
por: Xiaoguang Li, et al.
Publicado: (2021) -
Global Joint Entropy Algorithm-Based Evaluation of Dexmedetomidine Combined Local Anesthetics in Brachial Plexus Block from Ultrasound Images
por: Xiujuan Ge, et al.
Publicado: (2021) -
An Intention Understanding Algorithm Based on Multimodal Information Fusion
por: Shaosong Dou, et al.
Publicado: (2021)